981 resultados para Ion Affinity-chromatography


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The catabolic ornithine carbamoyltransferase from Pseudomonas aeruginosa, an enzyme consisting of 12 identical 38-kDa subunits, displays allosteric properties, namely carbamoylphosphate homotropic cooperativity and heterotropic activation by AMP and other nucleoside monophosphates and inhibition by polyamines. To shed light on the effect of the oligomeric organization on the enzyme's activity and/or allosteric behavior, a hybrid ornithine carbamoyltransferase/glutathione S-transferase (OTCase-GST) molecule was constructed by fusing the 3' end of the P. aeruginosa arcB gene (OTCase) to the 5' end of the cDNA encoding Musca domestica GST by using a polyglycine encoding sequence as a linker. The fusion protein was overexpressed in Escherichia coli and purified from cell extracts by affinity chromatography, making use of the GST domain. It was found to exist as a trimer and to retain both the homotropic and heterotropic characteristic interactions of the wild-type catabolic OTCase but to a lower extent as compared with the wild-type OTCase. The dodecameric organization of catabolic P. aeruginosa OTCase may therefore be related to an enhancement of the substrate cooperativity already present in its trimers (and perhaps also to the thermostability of the enzyme).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Type II restriction endonucleases are dimers of two identical subunits that together form one binding site for the double-stranded DNA substrate. Cleavage within the palindromic recognition site occurs in the two strands of the duplex in a concerted manner, due to the action of two catalytic centers, one per subunit. To investigate how the two identical subunits of the restriction endonuclease EcoRV cooperate in binding and cleaving their substrate, heterodimeric versions of EcoRV with different amino acid substitutions in the two subunits were constructed. For this purpose, the ecorV gene was fused to the coding region for the glutathione-binding domain of the glutathione S-transferase and a His6-tag, respectively. Upon cotransformation of Escherichia coli cells with both gene fusions stable homo- and heterodimers of the EcoRV variants are produced, which can be separated and purified to homogeneity by affinity chromatography over Ni-nitrilotriacetic acid and glutathione columns. A steady-state kinetic analysis shows that the activity of a heterodimeric variant with one inactive catalytic center is decreased by 2-fold, demonstrating that the two catalytic centers operate independently from each other. In contrast, heterodimeric variants with a defect in one DNA-binding site have a 30- to 50-fold lower activity, indicating that the two subunits of EcoRV cooperate in the recognition of the palindromic DNA sequence. By combining a subunit with an inactive catalytic center with a subunit with a defect in the DNA-binding site, EcoRV heterodimers were produced that only nick DNA specifically within the EcoRV recognition sequence.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Adenovirus E1A 243-amino acid protein can repress a variety of enhancer -linked viral and cellular promoters. This repression is presumed to be mediated by its interaction with and sequestration of p3OO, a transcriptional coactivator. Type IV 72-kDa collagenase is one of the matrix metalloproteases that has been implicated in differentiation, development, angiogenesis, and tumor metastasis. We show here that the cell type-specific transcription factor AP-2 is an important transcription factor for the activation of the type IV 72-kDa collagenase promoter and that adenovirus E1A 243-amino acid protein represses this promoter by targeting AP-2. Glutathione S-transferase-affinity chromatography studies show that the E1A protein interacts with the DNA binding/dimerization region of AP-2 and that the N-terminal amino acids of E1A protein are required for this interaction. Further, E1A deletion mutants which do not bind to p3OO can repress this collagenase promoter as efficiently as the wildtype E1A protein. Because the AP-2 element is present in a variety of viral and cellular enhancers which are repressed by E1A, these studies suggest that E1A protein can repress cellular and viral promoter/enhancers by forming a complex with cellular transcription factors and that this repression mechanism may be independent of its interaction with p3OO.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conjugative transfer of the plasmid pCF10 by Enterococcus faecalis donor cells occurs in response to a peptide sex pheromone, cCF10, secreted by recipients. The plasmid-encoded cCF10 binding protein, PrgZ, is similar in sequence to binding proteins (OppAs) encoded by oligopeptide permease (opp) operons. Mutation of prgZ decreased the sensitivity of donor cells to pheromone, whereas inactivation of the chromosomal E. faecalis opp operon abolished response at physiological concentrations of pheromone. Affinity chromatography experiments demonstrated the interaction of the pheromone with several putative intracellular regulatory molecules, including an RNA molecule required for positive regulation of conjugation functions. These data suggest that processing of the pheromone signal involves recruitment of a chromosomal Opp system by PrgZ and that signaling occurs by direct interaction of internalized pheromone with intracellular effectors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Amphiphysin, a major autoantigen in paraneoplastic Stiff-Man syndrome, is an SH3 domain-containing neuronal protein, concentrated in nerve terminals. Here, we demonstrate a specific, SH3 domain-mediated, interaction between amphiphysin and dynamin by gel overlay and affinity chromatography. In addition, we show that the two proteins are colocalized in nerve terminals and are coprecipitated from brain extracts consistent with their interactions in situ. We also report that a region of amphiphysin distinct from its SH3 domain mediates its binding to the alpha c subunit of AP2 adaptin, which is also concentrated in nerve terminals. These findings support a role of amphiphysin in synaptic vesicle endocytosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The phenobarbitone-responsive minimal promoter has been shown to lie between nt -179 and nt + 1 in the 5' (upstream) region of the CYP2B1/B2 gene in rat liver, on the basis of the drug responsiveness of the sequence linked to human growth hormone gene as reporter and targeted to liver as an asialoglycoprotein-DNA complex in vivo. Competition analyses of the nuclear protein-DNA complexes formed in gel shift assays with the positive (nt -69 to -98) and negative (nt -126 to -160) cis elements (PE and NE, respectively) identified within this region earlier indicate that the same protein may be binding to both the elements. The protein species purified on PE and NE affinity columns appear to be identical based on SDS/PAGE analysis, where it migrates as a protein of 26-28 kDa. Traces of a high molecular weight protein (94-100 kDa) are also seen in the preparation obtained after one round of affinity chromatography. The purified protein stimulates transcription of a minigene construct containing the 179 nt on the 5' side of the CYP2B1/B2 gene linked to the I exon in a cell-free system from liver nuclei. The purified protein can give rise to all the three complexes (I, II, and III) with the PE, just as the crude nuclear extract, under appropriate conditions. Manipulations in vitro indicate that the NE has a significantly higher affinity for the dephosphorylated form than for the phosphorylated form of the protein. The PE binds both forms. Phenobarbitone treatment of the animal leads to a significant increase in the phosphorylation of the 26- to 28-kDa and 94-kDa proteins in nuclear labeling experiments followed by isolation on a PE affinity column. We propose that the protein binding predominantly to the NE in the dephosphorylated state characterizes the basal level of transcription of the CYP2B1/B2 gene. Phenobarbitone treatment leads to phosphorylation of the protein, shifting the equilibrium toward binding to the PE. This can promote interaction with an upstream enhancer through other proteins such as the 94-kDa protein and leads to a significant activation of transcription.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biotinylated lactose permease from Escherichia coli containing a single-cysteine residue at position 330 (helix X) or at position 147, 148, or 149 (helix V) was purified by avidin-affinity chromatography and derivatized with 5-(alpha-bromoacetamido)-1,10-phenanthroline-copper [OP(Cu)]. Studies with purified, OP(Cu)-labeled Leu-330 --> Cys permease in dodecyl-beta-D-maltopyranoside demonstrate that after incubation in the presence of ascorbate, cleavage products of approximately 19 and 6-8 kDa are observed on immunoblots with anti-C-terminal antibody. Remarkably, the same cleavage products are observed with permease embedded in the native membrane. Comparison with the C-terminal half of the permease expressed independently as a standard indicates that the 19-kDa product results from cleavage near the cytoplasmic end of helix VII, whereas the 6- to 8-kDa fragment probably results from fragmentation near the cytoplasmic end of helix XI. Results are entirely consistent with a tertiary-structure model of the C-terminal half of the permease derived from earlier site-directed fluorescence and site-directed mutagenesis studies. Similar studies with OP(Cu)-labeled Cys-148 permease exhibit cleavage products at approximately 19 kDa and at 15-16 kDa. The larger fragment probably reflects cleavage at a site near the cytoplasmic end of helix VII, whereas the 15- to 16-kDa fragment is consistent with cleavage near the cytoplasmic end of helix VIII. When OP(Cu) is moved 100 degrees to position 149 (Val-149 --> Cys permease), a single product is observed at 19 kDa, suggesting fragmentation at the cytoplasmic end of helix VII. However, when the reagent is moved 100 degrees in the other direction to position 147 (Gly-147 --> Cys permease), cleavage is not observed. The results suggest that helix V is in close proximity to helices VII and VIII with position 148 in the interface between the helices, position 149 facing helix VII, and position 147 facing the lipid bilayer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The interferon-inducible double-stranded (ds) RNA-activated protein kinase (PKR) exhibits antiviral, anticellular, and antitumor activities. The mechanisms of its enzymatic activation by autophosphorylation and of the observed transdominant inhibitory phenotype of enzymatically inactive mutants have invoked PKR dimerization. Here we present direct evidence in support of PKR-PKR interaction. We show that radiolabeled PKR can specifically interact with matrix-bound unlabeled PKR in the absence of dsRNA. The self-association activity resides, in part, in the N-terminal region of 170 residues, which also constitutes the dsRNA-binding domain (DRBD). DRBD can bind to matrix-bound PKR or to matrix-bound DRBD. Dimerization of DRBD was directly demonstrated by chemical crosslinking. Affinity chromatography and electrophoretic mobility supershift assays demonstrated that mutants that fail to bind dsRNA can still exhibit protein-protein interaction. The PKR-PKR interaction could also be observed in a two-hybrid transcriptional activation assay in mammalian cells and consequently is likely to be an important feature of PKR activity in vivo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have detected an endoribonucleolytic activity in human cell extracts that processes the Escherichia coli 9S RNA and outer membrane protein A (ompA) mRNA with the same specificity as RNase E from E. coli. The human enzyme was partially purified by ion-exchange chromatography, and the active fractions contained a protein that was detected with antibodies shown to recognize E. coli RNase E. RNA containing four repeats of the destabilizing motif AUUUA and RNA from the 3' untranslated region of human c-myc mRNA were also found to be cleaved by E. coli RNase E and its human counterpart in a fashion that may suggest a role of this activity in mammalian mRNA decay. It was also found that RNA containing more than one AUUUA motif was cleaved more efficiently than RNA with only one or a mutated motif. This finding of a eukaryotic endoribonucleolytic activity corresponding to RNase E indicates an evolutionary conservation of the components of mRNA degradation systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Vesicles containing endothelin 1 (ET-1) were isolated from bovine aortic endothelial cells (BAECs) by fractionation of homogenates on sucrose density gradients by ultracentrifugation. The vesicles were localized at the 1.0/1.2 M sucrose interface using a specific anti-ET-1-(16-21) RIA. Identification of ET-1 and big ET-1 in this fraction was confirmed by HPLC analysis combined with RIA. Morphological examination of the ET-1-enriched fraction by electron microscopy identified clusters of vesicles approximately 100 nm in diameter. Immunostaining of ultrathin cryosections prepared from the vesicle fraction for ET-1 or big ET-1 showed clusters of 15-nm gold particles attached to or within vesicles. Immunofluorescence staining of whole BAECs using a specific ET-1-(16-21) IgG purified by affinity chromatography revealed punctate granulation of the cell cytoplasm viewed under light microscopy. This distinct pattern of staining was shown by confocal light microscopy to be intracellular. Immunofluorescence staining of whole cells with a polyclonal antiserum for big ET-1-(22-39) showed a defined perinuclear localization of precursor molecule. Hence, several different approaches have demonstrated that ET-1 and big ET-1 are localized within intracellular vesicles in BAECs, suggesting that these subcellular compartments are an important site for processing of big ET-1 by endothelin-converting enzyme.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Human hookworm infection is a major cause of gastrointestinal blood loss and iron deficiency anemia, affecting up to one billion people in the developing world. These soil-transmitted helminths cause blood loss during attachment to the intestinal mucosa by lacerating capillaries and ingesting extravasated blood. We have isolated the major anticoagulant used by adult worms to facilitate feeding and exacerbate intestinal blood loss. This 8.7-kDa peptide, named the Ancylostoma caninum anticoagulant peptide (AcAP), was purified by using a combination of ion-exchange chromatography, gel-filtration chromatography, and reverse-phase HPLC. N-terminal sequencing of AcAP reveals no homology to any previously identified anticoagulant or protease inhibitor. Single-stage chromogenic assays reveal that AcAP is a highly potent and specific inhibitor of human coagulation, with an intrinsic K*i for the inhibition of free factor Xa of 323.5 pM. In plasma-based clotting time assays, AcAP was more effective at prolonging the prothrombin time than both recombinant hirudin and tick anticoagulant peptide. These data suggest that AcAP, a specific inhibitor of factor Xa, is one of the most potent naturally occurring anticoagulants described to date.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two water channel homologs were cloned recently from rat kidney, mercurial-insensitive water channel (MIWC) and glycerol intrinsic protein (GLIP). Polyclonal antibodies were raised against synthetic C-terminal peptides and purified by affinity chromatography. MIWC and GLIP antibodies recognized proteins in rat kidney with an apparent molecular mass of 30 and 27 kDa, respectively, and did not cross-react. By immunofluorescence, MIWC and GLIP were expressed together on the basolateral plasma membrane of collecting duct principal cells in kidney. By immunohistochemistry, MIWC and GLIP were expressed on tracheal epithelial cells with greater expression of GLIP on the basal plasma membrane and MIWC on the lateral membrane; only MIWC was expressed in bronchial epithelia. In eye, GLIP was expressed in conjunctival epithelium, whereas MIWC was found in iris, ciliary body, and neural cell layers in retina. MIWC and GLIP colocalized on the basolateral membrane of villus epithelial cells in colon and brain ependymal cells. Expression of MIWC and GLIP was not detected in small intestine, liver, spleen, endothelia, and cells that express water channels CHIP28 or WCH-CD. These studies suggest water/solute transporting roles for MIWC and GLIP in the urinary concentrating mechanism, cerebrospinal fluid absorption, ocular fluid balance, fecal dehydration, and airway humidification. The unexpected membrane colocalization of MIWC and GLIP in several tissues suggests an interaction at the molecular and/or functional levels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O-linked N-acetylglucosamine (O-GlcNAc) is an abundant and dynamic posttranslational modification composed of a single monosaccharide, GlcNAc, glycosidically composed of a single monosaccharide, GlcNAc, glycosidically linked to the side-chain hydroxyl of serine or threonine residues. Although O-GlcNAc occurs on a myriad of nuclear and cytoplasmic proteins, only a few have thus far been identified. These O-GlcNAc-bearing proteins are also modified by phosphorylation and form reversible multimeric complexes. Here we present evidence for O-GlcNAc glycosylation of the oncoprotein c-Myc, a helix-loop-helix/leucine zipper phosphoprotein that heterodimerizes with Max and participates in the regulation of gene transcription in normal and neoplastic cells. O-GlcNAc modification of c-Myc is shown by three different methods: (i) demonstration of lectin binding to in vitro translated protein using a protein-protein interaction mobility-shift assay; (ii) glycosidase or glycosyltransferase treatment of in vitro translated protein analyzed by lectin affinity chromatography; and (iii) direct characterization of the sugar moieties on purified recombinant protein overexpressed in either insect cells or Chinese hamster ovary cells. Analyses of serial deletion mutants of c-Myc further suggest that the O-GlcNAc site(s) are located within or near the N-terminal transcription activation/malignant transformation domain, a region where mutations of c-Myc that are frequently found in Burkitt and AIDS-related lymphomas cluster.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Prolyl 4-hydroxylase (EC 1.14.11.2) catalyzes the posttranslational formation of 4-hydroxyproline in collagens. The vertebrate enzyme is an alpha 2 beta 2 tetramer, the beta subunit of which is a highly unusual multifunctional polypeptide, being identical to protein disulfide-isomerase (EC 5.3.4.1). We report here the cloning of a second mouse alpha subunit isoform, termed the alpha (II) subunit. This polypeptide consists of 518 aa and a signal peptide of 19 aa. The processed polypeptide is one residue longer than the mouse alpha (I) subunit (the previously known type), the cloning of which is also reported here. The overall amino acid sequence identity between the mouse alpha (II) and alpha (I) subunits is 63%. The mRNA for the alpha (II) subunit was found to be expressed in a variety of mouse tissues. When the alpha (II) subunit was expressed together with the human protein disulfide-isomerase/beta subunit in insect cells by baculovirus vectors, an active prolyl 4-hydroxylase was formed, and this protein appeared to be an alpha (II) 2 beta 2 tetramer. The activity of this enzyme was very similar to that of the human alpha (I) 2 beta 2 tetramer, and most of its catalytic properties were also highly similar, but it differed distinctly from the latter in that it was inhibited by poly(L-proline) only at very high concentrations. This property may explain why the type II enzyme was not recognized earlier, as an early step in the standard purification procedure for prolyl 4-hydroxylase is affinity chromatography on a poly(L-proline) column.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Several lines of evidence indicate that immunoglobulin-bound prolactin found in human serum is not a conventional complex between an anti-prolactin antibody and prolactin but a different type of association of prolactin with the Fab portion of IgG heavy chains. The complex of prolactin with IgG was purified from serum by anti-human prolactin affinity chromatography and was shown to contain close to 1 mole of N epsilon-(gamma-glutamyl)lysine crosslinks per mole of complex, a characteristic feature in structures crosslinked by transglutaminase. Interestingly, the complex caused a proliferation of cells from a subset of patients with chronic lymphocytic leukemia, while it was inactive in a cell proliferation prolactin bioassay. By contrast, human prolactin stimulated the proliferation of cells in the bioassay but had no effect on the complex-responsive cells from the patients. Competition studies with prolactin and free Fc fragment of IgG demonstrated a necessity for engaging both the prolactin and the immunoglobulin receptors for proliferation. More importantly, competition for the growth response by free prolactin and IgG suggests both possible reasons for the slow growth of this neoplasm as well as avenues for control of the disease.