995 resultados para Intermittent heat
Resumo:
We report on an experimental and theoretical study of the transient flows which develop as a naturally ventilated room adjusts from one temperature to another. We focus on a room heated from below by a uniform heat source, with both high- and low-level ventilation openings. Depending on the initial temperature of the room relative to (i) the final equilibrium temperature and (ii) the exterior temperature, three different modes of ventilation may develop. First, if the room temperature lies between the exterior and the equilibrium temperature, the interior remains well-mixed and gradually heats up to the equilibrium temperature. Secondly, if the room is initially warmer than the equilibrium temperature, then a thermal stratification develops in which the upper layer of originally hot air is displaced upwards by a lower layer of relatively cool inflowing air. At the interface, some mixing occurs owing to the effects of penetrative convection. Thirdly, if the room is initially cooler than the exterior, then on opening the vents, the original air is displaced downwards and a layer of ambient air deepens from above. As this lower layer drains, it is eventually heated to the ambient temperature, and is then able to mix into the overlying layer of external air, and the room becomes well-mixed. For each case, we present new laboratory experiments and compare these with some new quantitative models of the transient flows. We conclude by considering the implications of our work for natural ventilation of large auditoria.
Resumo:
We investigate the steady state natural ventilation of a room heated at the base and consisting of two vents at different levels. We explore how the air flow rate and internal temperature relative to the exterior vary as a function of the vent areas, position of the vents and heat load in order to establish appropriate ventilation strategies for a room. When the room is heated by a distributed source, the room becomes well mixed and the steady state ventilation rate depends on the heating rate, the area of the vents and the distance between the lower and upper level vents. However, when the room is heated by a localised source the room becomes stratified. If the effective ventilation area is sufficiently large, then the interface separating the two layers lies above the inlet vent and the lower layer is comprised of ambient fluid. In this case the upper layer is warmer than in the well mixed case and the ventilation rate is smaller. However, if the effective area for ventilation is sufficiently small, then the interface separating the two layers lies below the inlet vent and the lower layer is comprised of warm fluid which originates as the cold incoming fluid mixes during descent from the vent through the upper layer. In this case both the ventilation rate and the upper layer temperature are the same as in the case of a distributed heat load. As the vertical separation between lower and upper level vents decreases, then the temperature difference between the layers falls to zero and the room becomes approximately well mixed. These findings suggest how the appropriate ventilation strategy for a room can be varied depending on the exterior temperature, with mixing ventilation more suitable for winter conditions and displacement ventilation for warmer external temperatures.
Resumo:
The dominant industrial approach for the reduction of NO x emissions in industrial gas turbines is the lean pre-mixed prevaporized concept. The main advantage of this concept is the lean operation of the combustion process; this decreases the heat release rate from the flame and results in a reduction in operating temperature. The direct measurement of heat release rates via simultaneous laser induced fluorescence of OH and CH 2O radicals using planar laser induced fluorescence. The product of the two images correlated with the forward production rate of the HCO radical, which in turn has correlated well with heat release rates from premixed hydrocarbon flames. The experimental methodology of the measurement of heat release rate and applications in different turbulent premixed flames were presented. This is an abstract of a paper presented at the 7th World Congress of Chemical Engineering (Glasgow, Scotland 7/10-14/2005).
Resumo:
Efforts have been made in growing bulk single crystals of GaN front supercritical fluids using the ammonothermal method, which utilizes ammonia as fluid rather than water as in the hydrothermal process. Different mineralizers such as amide or azide and temperatures in the range of 200-600degreesC have been used to increase the solubility. The pressure is from 1 to 4 kbar. Modeling of the ammonothermal growth process has been used to identify factors which may affect the temperature distribution, fluid flow and nutrient transport. The GaN charge is considered as a porous media bed and the flow in the charge is simulated using the Darcy-Brinkman-Forchheimer model. The resulting governing equations are solved using the finite volume method. The effects of baffle design and opening on flow pattern and temperature distribution in an autoclave are analyzed. Two cases are considered with baffle openings of 15% and 20% in cross-sectional area, respectively.
Resumo:
This paper presents experimental results on heat transfer and pressure drop for a compact heat sink made of fully triangulated, lightweight (porosity∼0.938), aluminum lattice-frame materials (LFMs). Due to the inherent structural anisotropy of the LFMs, two mutually perpendicular orientations were selected for the measurements. Constant heat flux was applied to the heat sink under steady state conditions, and dissipated by forced air convection. The experimental data were compared with those predicted from an analytical model based on fin analogy. The experimental results revealed that pressure drop is strongly dependent upon the orientation of the structure, due mainly to the flow blockage effect. For heat transfer measurements, typical local temperature distributions on the substrate under constant heat flux conditions were captured with infrared camera. The thermal behavior of LFMs was found to follow closely that of cylinder banks, with early transition Reynolds number (based on strut diameter) equal to about 300. The Nusselt number prediction from the fin-analogy correlates well with experimental measurements, except at low Reynolds numbers where a slightly underestimation is observed. Comparisons with empty channels and commonly used heat exchanger media show that the present LFM heat sink can remove heat approximately seven times more efficient than an empty channel and as efficient as a bank of cylinders at the same porosity level. The aluminum LFMs are extremely stiff and strong, making them ideal candidates for multifunctional structures requiring both heat dissipation and mechanical load carrying capabilities. © 2003 Elsevier Ltd. All rights reserved.
Resumo:
Shape Memory Alloy (SMA) can be easily deformed to a new shape by applying a small external load at low temperature, and then recovers its original configuration upon heating. This unique shape memory phenomenon has inspired many novel designs. SMA based heat engine is one among them. SMA heat engine is an environment-friendly alternative to extract mechanical energy from low-grade energies, for instance, warm wastewater, geothermal energy, solar thermal energy, etc. The aim of this paper is to present an applicable theoretical model for simulation of SMA-based heat engines. First, a micro-mechanical constitutive model is derived for SMAs. The volume fractions of austenite and martensite variants are chosen as internal variables to describe the evolution of microstructure in SMA upon phase transition. Subsequently, the energy equation is derived based on the first thermodynamic law and the previous SMA model. From Fourier’s law of heat conduction and Newton’s law of cooling, both differential and integral forms of energy conversion equation are obtained.
Resumo:
Since convective boiling or highly subcooled single-phase forced convection in micro-channels is an effective cooling mechanism with a wide range of applications, more experimental and theoretical studies are required to explain and verify the forced convection heat transfer phenomenon in narrow channels. In this experimental study, we model the convective boiling behavior of water with low latent heat substance Freon 113 (R-113), with the purpose of saving power consumption and visualizing experiments. Both heat transfer and pressure drop characteristics were measured in subcooled and saturated concentric narrow gap forced convection boiling. Data were obtained to qualitatively identify the effects of gap size, pressure, flow rate and wall superheat on boiling regimes and the transition between various regimes. Some significant differences from unconfined forced convection boiling were found,and also, the flow patterns in narrow vertical annulus tubes have been studied quantitatively.
Resumo:
Direct numerical simulation (DNS) of supercritical CO2 turbulent channel flow has been performed to investigate the heat transfer mechanism of supercritical fluid. In the present DNS, full compressible Navier-Stokes equations and Peng-Robison state equation are solved. Due to effects of the mean density variation in the wall normal direction, mean velocity in the cooling region becomes high compared with that in the heating region. The mean width between high-and low-speed streaks near the wall decreases in the cooling region, which means that turbulence in the cooling region is enhanced and lots of fine scale eddies are created due to the local high Reynolds number effects. From the turbulent kinetic energy budget, it is found that compressibility effects related with pressure fluctuation and dilatation of velocity fluctuation can be ignored even for supercritical condition. However, the effect of density fluctuation on turbulent kinetic energy cannot be ignored. In the cooling region, low kinematic viscosity and high thermal conductivity in the low speed streaks modify fine scale structure and turbulent transport of temperature, which results in high Nusselt number in the cooling condition of the supercritical CO2.
Resumo:
Arrhenius law implicates that only those molecules which possess the internal energy greater than the activation energy E-a can react. However, the internal energy will not be proportional to the gas temperature if the specific heat ratio gamma and the gas constant R vary during chemical reaction processes. The varying gamma may affect significantly the chemical reaction rate calculated with the Arrhenius law under the constant gamma assumption, which has been widely accepted in detonation and combustion simulations for many years. In this paper, the roles of variable gamma and R in Arrhenius law applications are reconsidered, and their effects on the chemical reaction rate are demonstrated by simulating one-dimensional C-J and two-dimensional cellular detonations. A new overall one-step detonation model with variable gamma and R is proposed to improve the Arrhenius law. Numerical experiments demonstrate that this improved Arrhenius law works well in predicting detonation phenomena with the numerical results being in good agreement with experimental data.
Resumo:
We propose and analyse a new model of thermocapillary convection with evaporation in a cavity subjected to horizontal temperature gradient, rather than the previously studied model without evaporation. The pure liquid layer with a top free surface in contact with its own vapour is considered in microgravity condition. The computing programme developed for simulating this model integrates the two-dimensional, time-dependent Navier-Stokes equations and energy equation by a second-order accurate projection method. We focus on the coupling of evaporation and thermocapillary convection by investigating the influence of evaporation Biot number and Marangoni number on the interfacial mass and heat transfer. Three different regimes of the coupling mechanisms are found and explained from our numerical results.
Resumo:
When the atomic force microscopy (AFM) in tapping mode is in intermittent contact with a soft substrate, the contact time can be a significant portion of a cycle, resulting in invalidity of the impact oscillator model, where the contact time is assumed to be infinitely small. Furthermore, we demonstrate that the AFM intermittent contact with soft substrate can induce the motion of higher modes in the AFM dynamic response. Traditional ways of modeling AFM (one degree of freedom (DOF) system or single mode analysis) are shown to have serious mistakes when applied to this kind of problem. A more reasonable displacement criterion on contact is proposed, where the contact time is a function of the mechanical properties of AFM and substrate, driving frequencies/amplitude, initial conditions, etc. Multi-modal analysis is presented and mode coupling is also shown. (c) 2006 Published by Elsevier Ltd.