868 resultados para Intelligent Robotics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The area of Human-Machine Interface is growing fast due to its high importance in all technological systems. The basic idea behind designing human-machine interfaces is to enrich the communication with the technology in a natural and easy way. Gesture interfaces are a good example of transparent interfaces. Such interfaces must identify properly the action the user wants to perform, so the proper gesture recognition is of the highest importance. However, most of the systems based on gesture recognition use complex methods requiring high-resource devices. In this work, we propose to model gestures capturing their temporal properties, which significantly reduce storage requirements, and use clustering techniques, namely self-organizing maps and unsupervised genetic algorithm, for their classification. We further propose to train a certain number of algorithms with different parameters and combine their decision using majority voting in order to decrease the false positive rate. The main advantage of the approach is its simplicity, which enables the implementation using devices with limited resources, and therefore low cost. The testing results demonstrate its high potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a novel deployment of an intelligent user-centered HVAC (Heating, Ventilating and Air Conditioner) control system. The main objective of this system is to optimize user comfort and to reduce energy consumption in office buildings. Existing commercial HVAC control systems work in a fixed and predetermined way. The novelty of the proposed system is that it adapts dynamically to the user and to the building environment. For this purpose the system architecture has been designed under the paradigm of Ambient Intelligence. A prototype of the system proposed has been tested in a real-world environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A basic requirement of the data acquisition systems used in long pulse fusion experiments is the real time physical events detection in signals. Developing such applications is usually a complex task, so it is necessary to develop a set of hardware and software tools that simplify their implementation. This type of applications can be implemented in ITER using fast controllers. ITER is standardizing the architectures to be used for fast controller implementation. Until now the standards chosen are PXIe architectures (based on PCIe) for the hardware and EPICS middleware for the software. This work presents the methodology for implementing data acquisition and pre-processing using FPGA-based DAQ cards and how to integrate these in fast controllers using EPICS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was twofold: on the one hand, to describe a comparative study of two intelligent control techniques-fuzzy and intelligent proportional-integral (PI) control, and on the other, to try to provide an answer to an as yet unsolved topic in the automotive sector-stop-and-go control in urban environments at very low speeds. Commercial vehicles exhibit nonlinear behavior and therefore constitute an excellent platform on which to check the controllers. This paper describes the design, tuning, and evaluation of the controllers performing actions on the longitudinal control of a car-the throttle and brake pedals-to accomplish stop-and-go manoeuvres. They are tested in two steps. First, a simulation model is used to design and tune the controllers, and second, these controllers are implemented in the commercial vehicle-which has automatic driving capabilities-to check their behavior. A stop-and-go manoeuvre is implemented with the two control techniques using two cooperating vehicles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is clear evidence that investment in intelligent transportation system technologies brings major social and economic benefits. Technological advances in the area of automatic systems in particular are becoming vital for the reduction of road deaths. We here describe our approach to automation of one the riskiest autonomous manœuvres involving vehicles – overtaking. The approach is based on a stereo vision system responsible for detecting any preceding vehicle and triggering the autonomous overtaking manœuvre. To this end, a fuzzy-logic based controller was developed to emulate how humans overtake. Its input is information from the vision system and from a positioning-based system consisting of a differential global positioning system (DGPS) and an inertial measurement unit (IMU). Its output is the generation of action on the vehicle’s actuators, i.e., the steering wheel and throttle and brake pedals. The system has been incorporated into a commercial Citroën car and tested on the private driving circuit at the facilities of our research center, CAR, with different preceding vehicles – a motorbike, car, and truck – with encouraging results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hoy en día, el desarrollo tecnológico en el campo de los sistemas inteligentes de transporte (ITS por sus siglas en inglés) ha permitido dotar a los vehículos con diversos sistemas de ayuda a la conducción (ADAS, del inglés advanced driver assistance system), mejorando la experiencia y seguridad de los pasajeros, en especial del conductor. La mayor parte de estos sistemas están pensados para advertir al conductor sobre ciertas situaciones de riesgo, como la salida involuntaria del carril o la proximidad de obstáculos en el camino. No obstante, también podemos encontrar sistemas que van un paso más allá y son capaces de cooperar con el conductor en el control del vehículo o incluso relegarlos de algunas tareas tediosas. Es en este último grupo donde se encuentran los sistemas de control electrónico de estabilidad (ESP - Electronic Stability Program), el antibloqueo de frenos (ABS - Anti-lock Braking System), el control de crucero (CC - Cruise Control) y los más recientes sistemas de aparcamiento asistido. Continuando con esta línea de desarrollo, el paso siguiente consiste en la supresión del conductor humano, desarrollando sistemas que sean capaces de conducir un vehículo de forma autónoma y con un rendimiento superior al del conductor. En este trabajo se presenta, en primer lugar, una arquitectura de control para la automatización de vehículos. Esta se compone de distintos componentes de hardware y software, agrupados de acuerdo a su función principal. El diseño de la arquitectura parte del trabajo previo desarrollado por el Programa AUTOPIA, aunque introduce notables aportaciones en cuanto a la eficiencia, robustez y escalabilidad del sistema. Ahondando un poco más en detalle, debemos resaltar el desarrollo de un algoritmo de localización basado en enjambres de partículas. Este está planteado como un método de filtrado y fusión de la información obtenida a partir de los distintos sensores embarcados en el vehículo, entre los que encontramos un receptor GPS (Global Positioning System), unidades de medición inercial (IMU – Inertial Measurement Unit) e información tomada directamente de los sensores embarcados por el fabricante, como la velocidad de las ruedas y posición del volante. Gracias a este método se ha conseguido resolver el problema de la localización, indispensable para el desarrollo de sistemas de conducción autónoma. Continuando con el trabajo de investigación, se ha estudiado la viabilidad de la aplicación de técnicas de aprendizaje y adaptación al diseño de controladores para el vehículo. Como punto de partida se emplea el método de Q-learning para la generación de un controlador borroso lateral sin ningún tipo de conocimiento previo. Posteriormente se presenta un método de ajuste on-line para la adaptación del control longitudinal ante perturbaciones impredecibles del entorno, como lo son los cambios en la inclinación del camino, fricción de las ruedas o peso de los ocupantes. Para finalizar, se presentan los resultados obtenidos durante un experimento de conducción autónoma en carreteras reales, el cual se llevó a cabo en el mes de Junio de 2012 desde la población de San Lorenzo de El Escorial hasta las instalaciones del Centro de Automática y Robótica (CAR) en Arganda del Rey. El principal objetivo tras esta demostración fue validar el funcionamiento, robustez y capacidad de la arquitectura propuesta para afrontar el problema de la conducción autónoma, bajo condiciones mucho más reales a las que se pueden alcanzar en las instalaciones de prueba. ABSTRACT Nowadays, the technological advances in the Intelligent Transportation Systems (ITS) field have led the development of several driving assistance systems (ADAS). These solutions are designed to improve the experience and security of all the passengers, especially the driver. For most of these systems, the main goal is to warn drivers about unexpected circumstances leading to risk situations such as involuntary lane departure or proximity to other vehicles. However, other ADAS go a step further, being able to cooperate with the driver in the control of the vehicle, or even overriding it on some tasks. Examples of this kind of systems are the anti-lock braking system (ABS), cruise control (CC) and the recently commercialised assisted parking systems. Within this research line, the next step is the development of systems able to replace the human drivers, improving the control and therefore, the safety and reliability of the vehicles. First of all, this dissertation presents a control architecture design for autonomous driving. It is made up of several hardware and software components, grouped according to their main function. The design of this architecture is based on the previous works carried out by the AUTOPIA Program, although notable improvements have been made regarding the efficiency, robustness and scalability of the system. It is also remarkable the work made on the development of a location algorithm for vehicles. The proposal is based on the emulation of the behaviour of biological swarms and its performance is similar to the well-known particle filters. The developed method combines information obtained from different sensors, including GPS, inertial measurement unit (IMU), and data from the original vehicle’s sensors on-board. Through this filtering algorithm the localization problem is properly managed, which is critical for the development of autonomous driving systems. The work deals also with the fuzzy control tuning system, a very time consuming task when done manually. An analysis of learning and adaptation techniques for the development of different controllers has been made. First, the Q-learning –a reinforcement learning method– has been applied to the generation of a lateral fuzzy controller from scratch. Subsequently, the development of an adaptation method for longitudinal control is presented. With this proposal, a final cruise control controller is able to deal with unpredictable environment disturbances, such as road slope, wheel’s friction or even occupants’ weight. As a testbed for the system, an autonomous driving experiment on real roads is presented. This experiment was carried out on June 2012, driving from San Lorenzo de El Escorial up to the Center for Automation and Robotics (CAR) facilities in Arganda del Rey. The main goal of the demonstration was validating the performance, robustness and viability of the proposed architecture to deal with the problem of autonomous driving under more demanding conditions than those achieved on closed test tracks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Swarm robotics is a field of multi-robotics in which large number of robots are coordinated in a distributed and decentralised way. It is based on the use of local rules, and simple robots compared to the complexity of the task to achieve, and inspired by social insects. Large number of simple robots can perform complex tasks in a more efficient way than a single robot, giving robustness and flexibility to the group. In this article, an overview of swarm robotics is given, describing its main properties and characteristics and comparing it to general multi-robotic systems. A review of different research works and experimental results, together with a discussion of the future swarm robotics in real world applications completes this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Providing security to the emerging field of ambient intelligence will be difficult if we rely only on existing techniques, given their dynamic and heterogeneous nature. Moreover, security demands of these systems are expected to grow, as many applications will require accurate context modeling. In this work we propose an enhancement to the reputation systems traditionally deployed for securing these systems. Different anomaly detectors are combined using the immunological paradigm to optimize reputation system performance in response to evolving security requirements. As an example, the experiments show how a combination of detectors based on unsupervised techniques (self-organizing maps and genetic algorithms) can help to significantly reduce the global response time of the reputation system. The proposed solution offers many benefits: scalability, fast response to adversarial activities, ability to detect unknown attacks, high adaptability, and high ability in detecting and confining attacks. For these reasons, we believe that our solution is capable of coping with the dynamism of ambient intelligence systems and the growing requirements of security demands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the development of the robotic multi-agent system SMART. In this system, the agent concept is applied to both hardware and software entities. Hardware agents are robots, with three and four legs, and an IP-camera that takes images of the scene where the cooperative task is carried out. Hardware agents strongly cooperate with software agents. These latter agents can be classified into image processing, communications, task management and decision making, planning and trajectory generation agents. To model, control and evaluate the performance of cooperative tasks among agents, a kind of PetriNet, called Work-Flow Petri Net, is used. Experimental results shows the good performance of the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is no doubt that there is no possibility of finding a single reference about domotics in the first half of the 20th century. The best known authors and those who have documented this discipline, set its origin in the 1970’s, when the x-10 technology began to be used, but it was not until 1988 when Larousse Encyclopedia decided to include the definition of "Smart Building". Furthermore, even nowadays, there is not a single definition widely accepted, and for that reason, many other expressions, namely "Intelligent Buildings" "Domotics" "Digital Home" or "Home Automation" have appeared to describe the automated buildings and homes. The lack of a clear definition for "Smart Buildings" causes difficulty not only in the development of a common international framework to develop research in this field, but it also causes insecurity in the potential user of these buildings. That is to say, the user does not know what is offered by this kind of buildings, hindering the dissemination of the culture of building automation in society. Thus, the main purpose of this paper is to propose a definition of the expression “Smart Buildings” that satisfactorily describes the meaning of this discipline. To achieve this aim, a thorough review of the origin of the term itself and the historical background before the emergence of the phenomenon of domotics was conducted, followed by a critical discussion of existing definitions of the term "Smart Buildings" and other similar terms. The extent of each definition has been analyzed, inaccuracies have been discarded and commonalities have been compared. Throughout the discussion, definitions that bring the term "Smart Buildings" near to disciplines such as computer science, robotics and also telecommunications have been found. However, there are also many other definitions that emphasize in a more abstract way the role of these new buildings in the society and the future of mankind.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the major challenges in evolutionary robotics is constituted by the need of the robot being able to make decisions on its own, in accordance with the multiple tasks programmed, optimizing its timings and power. In this paper, we present a new automatic decision making mechanism for a robot guide that allows the robot to make the best choice in order to reach its aims, performing its tasks in an optimal way. The election of which is the best alternative is based on a series of criteria and restrictions of the tasks to perform. The software developed in the project has been verified on the tour-guide robot Urbano. The most important aspect of this proposal is that the design uses learning as the means to optimize the quality in the decision making. The modeling of the quality index of the best choice to perform is made using fuzzy logic and it represents the beliefs of the robot, which continue to evolve in order to match the "external reality”. This fuzzy system is used to select the most appropriate set of tasks to perform during the day. With this tool, the tour guide-robot prepares its agenda daily, which satisfies the objectives and restrictions, and it identifies the best task to perform at each moment. This work is part of the ARABOT project of the Intelligent Control Research Group at the Universidad Politécnica de Madrid to create "awareness" in a robot guide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the design, development and first evaluation of an algorithm, named Intelligent Therapy Assistant (ITA), which automatically selects, configures and schedules rehabilitation tasks for patients with cognitive impairments after an episode of Acquired Brain Injury. The ITA is integrated in "Guttmann, Neuro Personal Trainer" (GNPT), a cognitive tele-rehabilitation platform that provides neuropsychological services.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes ExperNet, an intelligent multi-agent system that was developed under an EU funded project to assist in the management of a large-scale data network. ExperNet assists network operators at various nodes of a WAN to detect and diagnose hardware failures and network traffic problems and suggests the most feasible solution, through a web-based interface. ExperNet is composed by intelligent agents, capable of both local problem solving and social interaction among them for coordinating problem diagnosis and repair. The current network state is captured and maintained by conventional network management and monitoring software components, which have been smoothly integrated into the system through sophisticated information exchange interfaces. For the implementation of the agents, a distributed Prolog system enhanced with networking facilities was developed. The agents’ knowledge base is developed in an extensible and reactive knowledge base system capable of handling multiple types of knowledge representation. ExperNet has been developed, installed and tested successfully in an experimental network zone of Ukraine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary hypothesis stated by this paper is that the use of social choice theory in Ambient Intelligence systems can improve significantly users satisfaction when accessing shared resources. A research methodology based on agent based social simulations is employed to support this hypothesis and to evaluate these benefits. The result is a six-fold contribution summarized as follows. Firstly, several considerable differences between this application case and the most prominent social choice application, political elections, have been found and described. Secondly, given these differences, a number of metrics to evaluate different voting systems in this scope have been proposed and formalized. Thirdly, given the presented application and the metrics proposed, the performance of a number of well known electoral systems is compared. Fourthly, as a result of the performance study, a novel voting algorithm capable of obtaining the best balance between the metrics reviewed is introduced. Fifthly, to improve the social welfare in the experiments, the voting methods are combined with cluster analysis techniques. Finally, the article is complemented by a free and open-source tool, VoteSim, which ensures not only the reproducibility of the experimental results presented, but also allows the interested reader to adapt the case study presented to different environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ambient Intelligence could support innovative application domains like motor impairments' detection at the home environment. This research aims to prevent neurodevelopmental disorders through the natural interaction of the children with embedded intelligence daily life objects, like home furniture and toys. Designed system uses an interoperable platform to provide two intelligent interrelated home healthcare services: monitoring of children¿s abilities and completion of early stimulation activities. A set of sensors, which are embedded within the rooms, toys and furniture, allows private data gathering about the child's interaction with the environment. This information feeds a reasoning subsystem, which encloses an ontology of neurodevelopment items, and adapts the service to the age and acquisition of expected abilities. Next, the platform proposes customized stimulation services by taking advantage of the existing facilities at the child's environment. The result integrates Embedded Sensor Systems for Health at Mälardalen University with UPM Smart Home, for adapted services delivery.