960 resultados para Industrial efficiency
Resumo:
This study investigates the impact floods on property values using the hedonic property price approach and other relevant econometric techniques. The main objectives of this research are to investigate (1) the impact of the release of flood-risk information and the actual floods on property values (2) the temporal behaviour of negative impacts (3) the property submarket behaviour (4) the behaviour of flood affected vs flood non-affected areas and (5) the property market efficiency. The thesis expanded on the existing literature on natural disasters by applying a range of econometric techniques. Findings of this research are useful for policy decision-making which is aimed at minimizing the negative impacts of natural hazards on property markets. The thesis findings also provide a better framework for decision-making in the property insurance market. The methodological improvements that are made in the thesis will be invaluable for analysing the impacts of natural hazards elsewhere.
Resumo:
A novel and economical experimental technique has been developed to assess industrial aerosol deposition in various idealized porous channel configurations. This judicious examination on aerosol penetration in porous channels will assist engineers to better optimize designs for various engineering applications. Deposition patterns differ with porosity due to geometric configurations of the channel and superficial inlet velocities. Interestingly, it is found that two configurations of similar porosity exhibit significantly higher deposition fractions. Inertial impaction is profound at the leading edge of all obstacles, whereas particle build-up is observed at the trailing edge of the obstructions. A qualitative analysis shows that the numerical results are in good agreement with experimental results.
A review of efficiency measures for REITs and their specific application for Malaysian Islamic REITs
Resumo:
Purpose This paper aims to present a conceptual model on the efficiency of Islamic Real Estate Trusts (I-REITs) available in Malaysia. The key difference between the Islamic and their conventional investment vehicle part is mainly its own Shariah framework. Design/methodology/approach The paper reviews and synthesises the relevant literature on the performance analysis and efficiency measurements of Real Estate Investment Trusts. The paper then develops and proposes a conceptual model to measure the efficiency of Malaysian Islamic REITs. Findings The paper identifies and examines the appropriate methods and instruments to measure the efficiency in relation to the risk and profitability of Islamic REITs. The efficiency measure is important for the fund managers in order to maximise the shareholders’ return in an investment of property portfolio as well as proposing the best way to allocate resources efficiently. Research limitation/implications This is a preliminary review of current work that identifies the issues that will be addressed in future empirical research. The authors will be undertaking this future empirical research in measuring the efficiency of Malaysian REITs particularly the Islamic REITs using the non-parametric approach of Data Envelopment Analysis. Originality/value To date, there has been very limited research on the efficiency measurement of Islamic REITs. The current analysis of REIT has been focused on traditional non-Islamic funds. This paper will review and discuss the current literature on efficiency measurement to determine the most appropriate approaches and methodologies for future application in performance analysis of efficiency measure for Malaysian Islamic REITs.
Resumo:
This paper aims to present preliminary findings on measuring the technical efficiencies using Data Envelopment Analysis (DEA) in Malaysian Real Estate Investment Trusts (REITs) to determine the best practice for operations which include the asset allocation and scale size to improve the performance of Malaysian REITs. Variables identified as input and output will be assessed in this cross section analysis using the operational approach and Variable Return to Scale DEA (VRS-DEA) by focusing on Malaysian REITs for the year 2013. Islamic REITs have higher efficiency score as compared to the conventional REITs for both models. Diversified REITs are more efficient as compared to the specialised REIT using both models. For Model 1, the negative inefficient value is identified in the managerial inefficiency as compared to the scale inefficiency. This shows that inputs are not fully minimised to produce more outputs. However, when other expenses are considered as different input variables, the efficiency score becomes higher from 60.3% to 81.2%. In model 2, scale inefficiency produce greater inefficiency as compared to the managerial efficiency. The result suggests that Malaysian REITs have been operating at the wrong scale of operations as majority of the Malaysian REITs are operating at decreasing return to scale.
Resumo:
The self-assembly of layered molybdenum disulfide–graphene (MoS2–Gr) and horseradish peroxidase (HRP) by electrostatic attraction into a novel hybrid nanomaterial (HRP–MoS2–Gr) is reported. The properties of the MoS2–Gr were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (TEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). UV–vis and Fourier transform infrared spectroscopy (FT-IR) indicate that the native structure of the HRP is maintained after the assembly, implying good biocompatibility of MoS2–Gr nanocomposite. Furthermore, the HRP–MoS2–Gr composite is utilized as a biosensor, which displays electrocatalytic activity to hydrogen peroxide (H2O2) with high sensitivity (679.7 μA mM−1 cm−2), wide linear range (0.2 μM–1.103 mM), low detection limit (0.049 μM), and fast amperometric response. In addition, the biosensor also exhibits strong anti-interference ability, satisfactory stability and reproducibility. These desirable electrochemical properties are attributed to the good biocompatibility and electron transport efficiency of the MoS2–Gr composite, as well as the high loading of HRP. Therefore, this biosensor is potentially suitable for H2O2 analysis in environmental, pharmaceutical, food or industrial applications.
Resumo:
Avian species richness surveys, which measure the total number of unique avian species, can be conducted via remote acoustic sensors. An immense quantity of data can be collected, which, although rich in useful information, places a great workload on the scientists who manually inspect the audio. To deal with this big data problem, we calculated acoustic indices from audio data at a one-minute resolution and used them to classify one-minute recordings into five classes. By filtering out the non-avian minutes, we can reduce the amount of data by about 50% and improve the efficiency of determining avian species richness. The experimental results show that, given 60 one-minute samples, our approach enables to direct ecologists to find about 10% more avian species.
Resumo:
A forest of quadtrees is a refinement of a quadtree data structure that is used to represent planar regions. A forest of quadtrees provides space savings over regular quadtrees by concentrating vital information. The paper presents some of the properties of a forest of quadtrees and studies the storage requirements for the case in which a single 2m × 2m region is equally likely to occur in any position within a 2n × 2n image. Space and time efficiency are investigated for the forest-of-quadtrees representation as compared with the quadtree representation for various cases.
Resumo:
This thesis discusses the use of sub- and supercritical fluids as the medium in extraction and chromatography. Super- and subcritical extraction was used to separate essential oils from herbal plant Angelica archangelica. The effect of extraction parameters was studied and sensory analyses of the extracts were done by an expert panel. The results of the sensory analyses were compared to the analytically determined contents of the extracts. Sub- and supercritical fluid chromatography (SFC) was used to separate and purify high-value pharmaceuticals. Chiral SFC was used to separate the enantiomers of racemic mixtures of pharmaceutical compounds. Very low (cryogenic) temperatures were applied to substantially enhance the separation efficiency of chiral SFC. The thermodynamic aspects affecting the resolving ability of chiral stationary phases are briefly reviewed. The process production rate which is a key factor in industrial chromatography was optimized by empirical multivariate methods. General linear model was used to optimize the separation of omega-3 fatty acid ethyl esters from esterized fish oil by using reversed-phase SFC. Chiral separation of racemic mixtures of guaifenesin and ferulic acid dimer ethyl ester was optimized by using response surface method with three variables per time. It was found that by optimizing four variables (temperature, load, flowate and modifier content) the production rate of the chiral resolution of racemic guaifenesin by cryogenic SFC could be increased severalfold compared to published results of similar application. A novel pressure-compensated design of industrial high pressure chromatographic column was introduced, using the technology developed in building the deep-sea submersibles (Mir 1 and 2). A demonstration SFC plant was built and the immunosuppressant drug cyclosporine A was purified to meet the requirements of US Pharmacopoeia. A smaller semi-pilot size column with similar design was used for cryogenic chiral separation of aromatase inhibitor Finrozole for use in its development phase 2.
Resumo:
The efficiency with which a small beam trawl (1 x 0.5 m mouth) sampled postlarvae and juveniles of tiger prawns Penaeus esculentus and P, semisulcatus at night was estimated in 3 tropical seagrass communities (dominated by Thalassia hemprichii, Syringodium isoetifolium and Enhalus acoroides, respectively) in the shallow waters of the Gulf of Carpentaria in northern Australia. An area of seagrass (40 x 3 m) was enclosed by a net and the beam trawl was repeatedly hand-hauled over the substrate. Net efficiency (q) was calculated using 4 methods: the unweighted Leslie, weighted Leslie, DeLury and Maximum-likelihood (ML) methods. The Maximum-likelihood is the preferred method for estimating efficiency because it makes the fewest assumptions and is not affected by zero catches. The major difference in net efficiencies was between postlarvae (mean ML q +/- 95% confidence limits = 0.66 +/- 0.16) and juveniles of both species (mean q for juveniles in water less than or equal to 1.0 m deep = 0.47 +/- 0.05), i.e. the beam trawl was more efficient at capturing postlarvae than juveniles. There was little difference in net efficiency for P, esculentus between seagrass types (T, hemprichii versus S. isoetifolium), even though the biomass and morphologies of seagrass in these communities differed greatly (biomasses were 54 and 204 g m(-2), respectively). The efficiency of the net appeared to be the same for juveniles of the 2 species in shallow water, but was lower for juvenile P, semisulcatus at high tide when the water was deeper (1.6 to 1.9 m) (0.35 +/- 0.08). The lower efficiency near the time of high tide is possibly because the prawns are more active at high than low tide, and can also escape above the net. Factors affecting net efficiency and alternative methods of estimating net efficiency are discussed.
Resumo:
Traditional comparisons between the capture efficiency of sampling devices have generally looked at the absolute differences between devices. We recommend that the signal-to-noise ratio be used when comparing the capture efficiency of benthic sampling devices. Using the signal-to-noise ratio rather than the absolute difference has the advantages that the variance is taken into account when determining how important the difference is, the hypothesis and minimum detectable difference can be made identical for all taxa, it is independent of the units used for measurement, and the sample-size calculation is independent of the variance. This new technique is illustrated by comparing the capture efficiency of a 0.05 m(2) van Veen grab and an airlift suction device, using samples taken from Heron and One Tree lagoons, Australia.
Resumo:
The Cotton and Grain Adoption Program of the Queensland Rural Water Use Efficiency Initiative is targeting five major irrigation regions in the state with the objective to develop better irrigation water use efficiency (WUE) through the adoption of best management practices in irrigation. The major beneficiaries of the program will be industries, irrigators and local communities. The benefits will flow via two avenues: increased production and profit resulting from improved WUE and improved environmental health as a consequence of greatly reduced runoff of irrigation tailwater into rivers and streams. This in turn will reduce the risk of nutrient and pesticide contamination of waterways. As a side effect, the work is likely to contribute to an improved public image of the cotton and grain industries. In each of the five regions, WUE officers have established grower groups to assist in providing local input into the specific objectives of extension and demonstration activities. The groups also assist in developing growers' perceptions of ownership of the work. Activities are based around four on-farm demonstration sites in each region where irrigation management techniques and hardware are showcased. A key theme of the program is monitoring water use. This is applied both to on-farm storage and distribution as well as to application methods and in-field management. This paper describes the project, its activities and successes.
Resumo:
Field trials and laboratory bioassays were undertaken to compare the performance and efficacy (mortality of diamondback moth larvae) of insecticides applied to cabbages with three high volume hydraulic knapsack sprayers (NS-16, PB-20 and Selecta 12V) and a controlled droplet application (CDA) sprayer. In field experiments, the high volume knapsack sprayers (application rate 500-600 L ha-') provided better spray coverage on the upper and lower surfaces of inner leaves, the upper surfaces of middle and outer leaves, and greater biological efficacy than the CDA sprayer (application rate 20~40 L ha-'). The PB-20 provided better spray coverage on the upper surface of middle leaves and both Surfaces of outer leaves when compared with the Selecta I2V. However, its biological efficacy in the field was not significantly different from that of the other high volume sprayers. Increasing the application rate from 20 to 40 L ha - ' for the CDA sprayer significantly increased droplet density but had no impact on test insect mortality. Laboratory evaluations of biological efficacy yielded higher estimates than field evaluations and there was no significant difference between the performance of the PB-20 and the CDA sprayer. Significant positive relationships were detected between insect mortality and droplet density deposited for both the PB-20 and the CDA sprayers
Resumo:
This article contributes an original integrated model of an open-pit coal mine for supporting energy-efficient decisions. Mixed integer linear programming is used to formulate a general integrated model of the operational energy consumption of four common open-pit coal mining subsystems: excavation and haulage, stockpiles, processing plants and belt conveyors. Mines are represented as connected instances of the four subsystems, in a flow sheet manner, which are then fitted to data provided by the mine operators. Solving the integrated model ensures the subsystems’ operations are synchronised and whole-of-mine energy efficiency is encouraged. An investigation on a case study of an open-pit coal mine is conducted to validate the proposed methodology. Opportunities are presented for using the model to aid energy-efficient decision-making at various levels of a mine, and future work to improve the approach is described.
Resumo:
Quantifying the local crop response to irrigation is important for establishing adequate irrigation management strategies. This study evaluated the effect of irrigation applied with subsurface drip irrigation on field corn (Zea mays L.) evapotranspiration (ETc), yield, water use efficiencies (WUE = yield/ETc, and IWUE = yield/irrigation), and dry matter production in the semiarid climate of west central Nebraska. Eight treatments were imposed with irrigation amounts ranging from 53 to 356 mm in 2005 and from 22 to 226 mm in 2006. A soil water balance approach (based on FAO-56) was used to estimate daily soil water and ETc. Treatments resulted in seasonal ETc of 580-663 mm and 466-656 mm in 2005 and 2006, respectively. Yields among treatments differed by as much as 22% in 2005 and 52% in 2006. In both seasons, irrigation significantly affected yields, which increased with irrigation up to a point where irrigation became excessive. Distinct relationships were obtained each season. Yields increased linearly with seasonal ETc (R 2 = 0.89) and ETc/ETp (R 2 = 0.87) (ETp = ETc with no water stress). The yield response factor (ky), which indicates the relative reduction in yield to relative reduction in ETc, averaged 1.58 over the two seasons. WUE increased non-linearly with seasonal ETc and with yield. WUE was more sensitive to irrigation during the drier 2006 season, compared with 2005. Both seasons, IWUE decreased sharply with irrigation. Irrigation significantly affected dry matter production and partitioning into the different plant components (grain, cob, and stover). On average, the grain accounted for the majority of the above-ground plant dry mass (≈59%), followed by the stover (≈33%) and the cob (≈8%). The dry mass of the plant and that of each plant component tended to increase with seasonal ETc. The good relationships obtained in the study between crop performance indicators and seasonal ETc demonstrate that accurate estimates of ETc on a daily and seasonal basis can be valuable for making tactical in-season irrigation management decisions and for strategic irrigation planning and management.