988 resultados para Individual fishery quotas (IFQ)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

On September 7, 2000 the National Marine Fisheries Service announced that it was reinitiating consultation under Section 7 of the Endangered Species Act on pelagic fisheries for swordfish, sharks, tunas, and billfish. 1 Bycatch of a protected sea turtle species is considered a take under the Endangered Species Act (PL93-205). On June 30, 2000 NMFS completed a Biological Opinion on an amendment to the Highly Migratory Pelagic Fisheries Management Plan that concluded that the continued operation of the pelagic longline fishery was likely to jeopardize the continued existence of loggerhead and leatherback sea turtles.2 Since that Biological Opinion was issued NMFS concluded that further analyses of observer data and additional population modeling of loggerhead sea turtles was needed to determine more precisely the impact of the pelagic longline fishery on turtles. 3,4 Hence, the reinitiation of consultation. The documents that follow constitute the scientific review and synthesis of information pertaining to the narrowly defined reinitiation of consultation: the impact of the pelagic longline fishery on loggerhead and leatherback sea turtles The document is in 3 parts, plus 5 appendices. Part I is a stock assessment of loggerhead sea turtles of the Western North Atlantic. Part II is a stock assessment of leatherback sea turtles of the Western North Atlantic. Part III is an assessment of the impact of the pelagic longline fishery on loggerhead and leatherback sea turtles of the Western North Atlantic. These documents were prepared by the NMFS Southeast Fisheries Science Center staff and academic colleagues at Duke University and Dalhousie University. Personnel involved from the SEFSC include Joanne Braun-McNeill, Lisa Csuzdi, Craig Brown, Jean Cramer, Sheryan Epperly, Steve Turner, Wendy Teas, Nancy Thompson, Wayne Witzell, Cynthia Yeung, and also Jeff Schmid under contract from the University or Miami. Our academic colleagues, Ransom Myers, Keith Bowen, and Leah Gerber from Dalhousie University and Larry Crowder and Melissa Snover from Duke University, also recipients of a Pew Charitable Trust Grant for a Comprehensive Study of the Ecological Impacts of the Worldwide Pelagic Longline Industry, made significant contributions to the quantitative analyses and we are very grateful for their collaboration. We appreciate the reviews of the stock definition sections on loggerheads and leatherbacks by Brian Bowen, University of Florida, and Peter Dutton, National Marine Fisheries Service Southwest Fisheries Science Center, respectively, and the comments of the NMFS Center of Independent Experts reviewers Robert Mohn, Ian Poiner, and YouGan Wang on the entire document. We also wish to acknowledge all the unpublished data used herein which were contributed by many researchers, especially the coordinators and volunteers of the nesting beach surveys and the sea turtle stranding and salvage network and the contributors to the Cooperative Marine Turtle Tagging Program. (PDF contains 349 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study was conducted in October 2006 in the Charleston, South Carolina area to test the movements of three different buoy line types to determine which produced a preferred profile that could reduce the risk of dolphin entanglement. Tests on diamond-braided nylon commonly used in the crab pot fishery were compared with stiffened line of Esterpro and calf types in both shallow and deep water environments using DSTmilli data loggers. Loggers were placed at intervals along the lines to record depth, and thus movements, over a 24 hour period. Three observers viewed video animations and charts created for each of the six trial days from the collected logger data and provided their opinions on the most desirable line type that fit set criteria. A quantitative analysis (ANCOVA) of the data was conducted taking into consideration daily tidal fluctuations and logger movements. Loggers tracking the tides had an r2 value approaching 1.00 and produced little movement other than with the tides. Conversely, r2 values approaching 0.00 were less affected by tidal movement and influenced by currents that cause more erratic movement. Results from this study showed that stiffened line, in particular the medium lay Esterpro type, produced the more desirable profiles that could reduce risk of dolphin entanglement. Combining the observer’s results with the ANCOVA results, Esterpro was chosen nearly 60% of the time as opposed to the nylon line which was only chosen 10% of the time. ANCOVA results showed that the stiffened lines performed better in both the shallow and deep water environments, while the nylon line only performed better during one trial in a deep water set, most probably due to the increased current velocities experienced that day. (58pp.)(PDF contains 68 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Executive Summary: Baseline characterization of resources is an essential part of marine protected area (MPA) management and is critical to inform adaptive management. Gray’s Reef National Marine Sanctuary (GRNMS) currently lacks adequate characterization of several key resources as identified in the 2006 Final Management Plan. The objectives of this characterization were to fulfill this need by characterizing the bottom fish, benthic features, marine debris, and the relationships among them for the different bottom types within the sanctuary: ledges, sparse live bottom, rippled sand, and flat sand. Particular attention was given to characterizing the different ledge types, their fish communities, and the marine debris associated with them given the importance of this bottom type to the sanctuary. The characterization has been divided into four sections. Section 1 provides a brief overview of the project, its relevance to sanctuary needs, methods of site selection, and general field procedures. Section 2 provides the survey methods, results, discussion, and recommendations for monitoring specific to the benthic characterization. Section 3 describes the characterization of marine debris. Section 4 is specific to the characterization of bottom fish. Field surveys were conducted during August 2004, May 2005, and August 2005. A total of 179 surveys were completed over ledge bottom (n=92), sparse live bottom (n=51), flat sand (n=20), and rippled sand (n=16). There were three components to each field survey: fish counting, benthic assessment, and quantification of marine debris. All components occurred within a 25 x 4 m belt transect. Two divers performed the transect at each survey site. One diver was responsible for identification of fish species, size, and abundance using a visual survey. The second diver was responsible for characterization of benthic features using five randomly placed 1 m2 quadrats, measuring ledge height and other benthic structures, and quantifying marine debris within the entire transect. GRNMS is composed of four main bottom types: flat sand, rippled sand, sparsely colonized live bottom, and densely colonized live bottom (ledges). Independent evaluation of the thematic accuracy of the GRNMS benthic map produced by Kendall et al. (2005) revealed high overall accuracy (93%). Most discrepancies between map and diver classification occurred during August 2004 and likely can be attributed to several factors, including actual map or diver errors, and changes in the bottom type due to physical forces. The four bottom types have distinct physical and biological characteristics. Flat and rippled sand bottom types were composed primarily of sand substrate and secondarily shell rubble. Flat sand and rippled sand bottom types were characterized by low percent cover (0-2%) of benthic organisms at all sites. Although the sand bottom types were largely devoid of epifauna, numerous burrows indicate the presence of infaunal organisms. Sparse live bottom and ledges were colonized by macroalgae and numerous invertebrates, including coral, gorgonians, sponges, and “other” benthic species (such as tunicates, anemones, and bryozoans). Ledges and sparse live bottom were similar in terms of diversity (H’) given the level of classification used here. However, percent cover of benthic species, with the exception of gorgonians, was significantly greater on ledge than on sparse live bottom. Percent biotic cover at sparse live bottom ranged from 0.7-26.3%, but was greater than 10% at only 7 out of 51 sites. Colonization on sparse live bottom is likely inhibited by shifting sands, as most sites were covered in a layer of sediment up to several centimeters thick. On ledge bottom type, percent cover ranged from 0.42-100%, with the highest percent cover at ledges in the central and south-central region of GRNMS. Biotic cover on ledges is influenced by local ledge characteristics. Cluster analysis of ledge dimensions (total height, undercut height, undercut width) resulted in three main categories of ledges, which were classified as short, medium, and tall. Median total percent cover was 97.6%, 75.1%, and 17.7% on tall, medium, and short ledges, respectively. Total percent cover and cover of macroalgae, sponges, and other organisms was significantly lower on short ledges compared to medium and tall ledges, but did not vary significantly between medium and tall ledges. Like sparse live bottom, short ledges may be susceptible to burial by sand, however the results indicate that ledge height may only be important to a certain threshold. There are likely other factors not considered here that also influence spatial distribution and community structure (e.g., small scale complexity, ocean currents, differential settlement patterns, and biological interactions). GRNMS is a popular site for recreational fishing and boating, and there has been increased concern about the accumulation of debris in the sanctuary and potential effects on sanctuary resources. Understanding the types, abundance, and distribution of debris is essential to improving debris removal and education efforts. Approximately two-thirds of all observed debris items found during the field surveys were fishing gear, and about half of the fishing related debris was monofilament fishing line. Other fishing related debris included leaders and spear gun parts, and non-gear debris included cans, bottles, and rope. The spatial distribution of debris was concentrated in the center of the sanctuary and was most frequently associated with ledges rather than at other bottom types. Several factors may contribute to this observation. Ledges are often targeted by fishermen due to the association of recreationally important fish species with this bottom type. In addition, ledges are structurally complex and are often densely colonized by biota, providing numerous places for debris to become stuck or entangled. Analysis of observed boat locations indicated that higher boat activity, which is an indication of fishing, occurs in the center of the sanctuary. On ledges, the presence and abundance of debris was significantly related to observed boat density and physiographic features including ledge height, ledge area, and percent cover. While it is likely that most fishing related debris originates from boats inside the sanctuary, preliminary investigation of ocean current data indicate that currents may influence the distribution and local retention of more mobile items. Fish communities at GRNMS are closely linked to benthic habitats. A list of species encountered, probability of occurrence, abundance, and biomass by habitat is provided. Species richness, diversity, composition, abundance, and biomass of fish all showed striking differences depending on bottom type with ledges showing the highest values of nearly all metrics. Species membership was distinctly separated by bottom type as well, although very short, sparsely colonized ledges often had a similar community composition to that of sparse live bottom. Analysis of fish communities at ledges alone indicated that species richness and total abundance of fish were positively related to total percent cover of sessile invertebrates and ledge height. Either ledge attribute was sufficient to result in high abundance or species richness of fish. Fish diversity (H`) was negatively correlated with undercut height due to schools of fish species that utilize ledge undercuts such as Pareques species. Concurrent analysis of ledge types and fish communities indicated that there are five distinct combinations of ledge type and species assemblage. These include, 1) short ledges with little or no undercut that lacked many of the undercut associated species except Urophycis earlii ; 2) tall, heavily colonized, deeply undercut ledges typically with Archosargus probatocephalus, Mycteroperca sp., and Pareques sp.; 3) tall, heavily colonized but less undercut with high occurrence of Lagodon rhomboides and Balistes capriscus; 4) short, heavily colonized ledges typically with Centropristis ocyurus, Halichoeres caudalis, and Stenotomus sp.; and 5) tall, heavily colonized, less undercut typically with Archosargus probatocephalus, Caranx crysos and Seriola sp.. Higher levels of boating activity and presumably fishing pressure did not appear to influence species composition or abundance at the community level although individual species appeared affected. These results indicate that merely knowing the basic characteristics of a ledge such as total height, undercut width, and percent cover of sessile invertebrates would allow good prediction of not only species richness and abundance of fish but also which particular fish species assemblages are likely to occur there. Comparisons with prior studies indicate some major changes in the fish community at GRNMS over the last two decades although the causes of the changes are unknown. Species of interest to recreational fishermen including Centropristis striata, Mycteroperca microlepis, and Mycteroperca phenax were examined in relation to bottom features, areas of assumed high versus low fishing pressure, and spatial dispersion. Both Mycteroperca species were found more frequently when undercut height of ledges was taller. They often were found together in small mixed species groups at ledges in the north central and southwest central regions of the sanctuary. Both had lower mode size and proportion of fish above the fishery size limit in heavily fished areas of the sanctuary (i.e. high boat density) despite the presence of better habitat in that region. Black sea bass, C. striata, occurred at 98% of the ledges surveyed and appeared to be evenly distributed throughout the sanctuary. Abundance was best explained by a positive relationship with percent cover of sessile biota but was also negatively related to presence of either Mycteroperca species. This may be due to predation by the Mycteroperca species or avoidance of sites where they are present by C. striata. Suggestions for monitoring bottom features, marine debris, and bottom fish at GRNMS are provided at the end of each chapter. The present assessment has established quantitative baseline characteristics of many of the key resources and use issues at GRNMS. The methods can be used as a model for future assessments to track the trajectory of GRNMS resources. Belt transects are ideally suited to providing efficient and quantitative assessment of bottom features, debris, and fish at GRNMS. The limited visibility, sensitivity of sessile biota, and linear nature of ledge habitats greatly diminish the utility of other sampling techniques. Ledges should receive the bulk of future characterization effort due to their importance to the sanctuary and high variability in physical structure, benthic composition, and fish assemblages. (PDF contains 107 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global warming of the oceans is expected to alter the environmental conditions that determine the growth of a fishery resource. Most climate change studies are based on models and scenarios that focus on economic growth, or they concentrate on simulating the potential losses or cost to fisheries due to climate change. However, analysis that addresses model optimization problems to better understand of the complex dynamics of climate change and marine ecosystems is still lacking. In this paper a simple algorithm to compute transitional dynamics in order to quantify the effect of climate change on the European sardine fishery is presented. The model results indicate that global warming will not necessarily lead to a monotonic decrease in the expected biomass levels. Our results show that if the resource is exploited optimally then in the short run, increases in the surface temperature of the fishery ground are compatible with higher expected biomass and economic profit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monthly population size of bait shrimp in the Bay was estimated from December 1984 to July 1985. Growth rates for male and female P. duorarum showed that pink shrimp exhibit a mean residence time in the nursery area (Biscayne Bay) of approximately 21 weeks. Monthly mortality rates were determined for each sex of pink shrimp. It was estimated that 23% and 26% of the male and female monthly population size, respectively, was absorbed by both the fishery and ecosystem monthly. Monthly proportion of the standing stock expected to die exclusively through fishing was 6.5% and 6.0% for males and females respectively. Estimates of emigration rates showed that approximately 4.0% of the population was lost from the Bay system each month. This surplus production was about 50% of the average monthly catch by the fleet. Fishing mortality represents only 8 - 9% of the losses to the shrimp population. The biggest source of loss is emigration, suggesting that most shrimp beyond the size at recruitment (to the fishery) are not utilized for food while in the Bay. Thus, it appears that the direct impact of the fishery on the bait shrimp population is relatively small. (PDF contains 46 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A literature review was conducted to locate information on the flow of energy from primary producers to the fishery stocks of the Puerto Rican-Virgin Islands insular shelf. This report uses site-specific information to describe the major ecological subsystems, or habitats, of the region, to identify the more common species and the subsystems in which they occur, to quantify productivity and biomass, and to outline trophic relationships. Discussions on each topic and subsystem vary in substance and detail, being limited by the availability and accessibility of information. (PDF contains 189 pages) Seven distinct subsystems are described: mangrove estuary, seagrass bed, coral reef, algal plain, sand/mud bottom, shelf break, and overlying pelagic. Over 50 tables provide lists of species found in each habitat on various surveys dating back to 1956. Estimates of density, relative abundance, and productivity are provided when possible. We evaluated whether sufficient information exists to support an analysis of the energy basis of fishery production in the area, beginning with the design and development of an ecosystem model. Data needs in three categories - species lists, biomass, and trophic relations - were examined for each subsystem and for each of three species groups - primary producers, invertebrates, and fish. We concluded that adequate data, sufficient for modeling purposes, are available in 16 (25%) of 64 categories; limited data, those requiring greater extrapolation, are available in 35 (55%) categories; and no data are available in 13 (20%) categories. The best-studied subsystems are seagrass beds and coral reefs, with at least limited data in all categories. Invertebrates, the intermediate link in the food web between primary producers and fishes, are the least quantified group in the region. Primary production and fishes, however, are relatively well-studied, providing sufficient data to support an ecosystem-level analysis and to initiate a modeling effort.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The California Fish and Game Commission (Commission) has the authority to require one or any combination of Bycatch Reduction Device (BRD) types in the trawl fishery within California waters for Pacific ocean shrimp (Pandalus jordani), most commonly referred to as pink shrimp. The purpose of this report is to provide the Commission with the best available information about the BRDs used in the pink shrimp trawl fishery. The mandatory requirement for BRDs occurred in California in 2002, and in Oregon and Washington in 2003, resulting from an effort to minimize bycatch of overfished and quota managed groundfish species. Three types of BRDs currently satisfy the requirement for this device in the California fishery: 1) the Nordmøre grate (rigid-grate excluder); 2) soft-panel excluder; and 3) fisheye excluder; however, the design, specifications, and efficacy differ by BRD type. Although no data has been collected on BRDs directly from the California pink shrimp fishery, extensive research on the efficacy and differences among BRD types has been conducted by the Oregon Department of Fish and Wildlife (ODFW) since the mid-1990s. Rigid-grate excluders are widely considered to be the most effective of the three BRD types at reducing groundfish bycatch. Over 90 percent of the Oregon pink shrimp fleet use rigid-grate excluders. The majority of the current California pink shrimp fleet also uses rigid-grate excluders, according to a telephone survey conducted by the California Department of Fish and Game (Department) in 2007-2008 of pink shrimp fishermen who have been active in the California fishery in recent years. Hinged rigid-grate excluders have been developed in recent years to reduce the bending of the BRD on vessels that employ net reels to stow and deploy their trawl nets, and they have been used successfully on both single- and double-rig vessels in Oregon. Soft-panel excluders have been demonstrated to be effective at reducing groundfish bycatch, although excessive shrimp loss and other problems have also been associated with this design. Fisheye excluders have been used in the California fishery in the past, but they were disapproved in Oregon and Washington in 2003 because they were found to be less effective at reducing groundfish bycatch than other designs. The reputation of the United States west coast pink shrimp fishery as one of the cleanest shrimp fisheries in the world is largely attributed to the effectiveness of BRDs at reducing groundfish bycatch. Nevertheless, BRD research and development is still a relatively new field and additional modifications and methods may further reduce bycatch rates in the pink shrimp fishery.(PDF contains 12 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seasonal surveys were conducted during 1998–1999 in Baja California, Baja California Sur, Sonora, and Sinaloa to determine the extent and activities of artisanal elasmobranch fisheries in the Gulf of California. One hundred and forty–seven fishing sites, or camps, were documented, the majority of which (n = 83) were located in Baja California Sur. Among camps with adequate fisheries information, the great majority (85.7%) targeted elasmobranchs during some part of the year. Most small, demersal sharks and rays were landed in mixed species fisheries that also targeted demersal teleosts, but large sharks were usually targeted in directed drift gillnet or, to a lesser extent, surface longline fisheries. Artisanal fishermen were highly opportunistic, and temporally switched targets depending on the local productivity of teleost, invertebrate, and elasmobranch fishery resources. Major fisheries for small sharks (< 1.5 m, “cazón”) were documented in Baja California during spring, in Sonora during autumn–spring, and in Sinaloa during winter and spring. Triakid sharks (Mustelus spp.) dominated cazón landings in the northern states, whereas juvenile scalloped hammerheads (Sphyrna lewini) primarily supported the fishery in Sinaloa. Large sharks (> 1.5 m, “tiburón”) were minor components of artisanal elasmobranch fisheries in Sonora and Sinaloa, but were commonly targeted during summer and early autumn in Baja California and Baja California Sur. The pelagic thresher shark (Alopias pelagicus) and silky shark (Carcharhinus falciformis) were most commonly landed in Baja California, whereas a diverse assemblage of pelagic and large coastal sharks was noted among Baja California Sur landings. Rays dominated summer landings in Baja California and Sinaloa, when elevated catch rates of the shovelnose guitarfish (Rhinobatos productus, 13.2 individuals/vessel/trip) and golden cownose ray (Rhinoptera steindachneri, 11.1 individuals/vesse/trip) primarily supported the respective fisheries. The Sonoran artisanal elasmobranch fishery was the most expansive recorded during this study, and rays (especially R. productus) dominated spring and summer landings in this state. Seasonal catch rates of small demersal sharks and rays were considerably greater in Sonora than in other surveyed states. Many tiburón populations (e.g., C. leucas, C. limbatus, C. obscurus, Galeocerdo cuvier) have likely been overfished, possibly shifting effort towards coastal populations of cazón and rays. Management recommendations, including conducting demographic analyses using available life history data, determining and protecting nursery areas, and enacting seasonal closures in areas of elasmobranch aggregation (e.g., reproduction, feeding), are proposed. Without effective, enforceable management to sustain or rebuild targeted elasmobranch populations in the Gulf of California, collapse of many fisheries is a likely outcome. (PDF contains 243 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ENGLISH: This study shows how the catch and effort statistics, from 1951 to 1956, of the fishery for yellowfin tuna, Neothunnus macropterus, in the Eastern Tropical Pacific Ocean, have been used to compute: (i) two indices of average population density; (ii) an index of concentration of effort on areas of greatest density of available yellowfin. These three indices were then used to determine: (i) quarterly and annual variation in each of them; (ii) the relationship between the two indices of density; (iii) the relationship of each of the indices to the number of exploited one-degree rectangles. To remove extreme sampling variation at low levels of effort, the data from all one-degree rectangles subjected to less than five logged days' fishing in a quarter were eliminated, and the computations were repeated for comparison with those of the original data. SPANISH: Este estudio da a conocer cómo las estadísticas sobre la pesca y el esfuerzo de pesca de la pesquería del atún aleta amarilla, Neothunnus macropterus, en el Océano Pacífico Oriental Tropical, durante 1951 a 1956, han servido para computar: (i) dos índices del promedio de la densidad de la población; (ií) un índice de la concentración del esfuerzo en las áreas de mayor densidad de atún aleta amarilla disponible. Estos tres índices han sido luego usados para determinar: (i) la variación trimestral y anual en cada uno de ellos; (ií) la relación entre los dos índices de densidad; (iii) la relación de cada uno de los índices con el número de rectángulos de un grado explotados. Para evitar la extrema variación del muestreo a bajos niveles de esfuerzo, se eliminaron los datos de todos los rectángulos de un grado sujetos a menos de cinco días de actividad pesquera durante un trimestre según los registros de los cuadernos de bitácora, y las computaciones se repitieron para compararlas con las de los datos originales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As part of a multibeam and side scan sonar (SSS) benthic survey of the Marine Conservation District (MCD) south of St. Thomas, USVI and the seasonal closed areas in St. Croix—Lang Bank (LB) for red hind (Epinephelus guttatus) and the Mutton Snapper (MS) (Lutjanus analis) area—we extracted signals from water column targets that represent individual and aggregated fish over various benthic habitats encountered in the SSS imagery. The survey covered a total of 18 km2 throughout the federal jurisdiction fishery management areas. The complementary set of 28 habitat classification digital maps covered a total of 5,462.3 ha; MCDW (West) accounted for 45% of that area, and MCDE (East) 26%, LB 17%, and MS the remaining 13%. With the exception of MS, corals and gorgonians on consolidated habitats were significantly more abundant than submerged aquatic vegetation (SAV) on unconsolidated sediments or unconsolidated sediments. Continuous coral habitat was the most abundant consolidated habitat for both MCDW and MCDE (41% and 43% respectively). Consolidated habitats in LB and MS predominantly consisted of gorgonian plain habitat with 95% and 83% respectively. Coral limestone habitat was more abundant than coral patch habitat; it was found near the shelf break in MS, MCDW, and MCDE. Coral limestone and coral patch habitats only covered LB minimally. The high spatial resolution (0.15 m) of the acquired imagery allowed the detection of differing fish aggregation (FA) types. The largest FA densities were located at MCDW and MCDE over coral communities that occupy up to 70% of the bottom cover. Counts of unidentified swimming objects (USOs), likely representing individual fish, were similar among locations and occurred primarily over sand and shelf edge areas. Fish aggregation school sizes were significantly smaller at MS than the other three locations (MCDW, MCDE, and LB). This study shows the advantages of utilizing SSS in determining fish distributions and density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consultoria Legislativa da Área XIX - Ciências Políticas, Sociologia Política, História, Relações Internacionais

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ENGLISH: In the eastern Pacific Ocean nearly all of the commercial catches of yellowfin tuna (Thunnus albacares) and skipjack (Katsuwonus pelamis) are taken by two types of vessels, baitboats, which use pole and line in conjunction with live-bait, and purse-seiners. From its inception until very recently (1959), this fishery was dominated by baitboats. This method of fishing has been described by Godsil (1938) and Shimada and Schaefer (1956). From 1951 through 1958 baitboats caught between 66.4 and 90.8 per cent of the yellowfin and between 87.2 and 95.3 per cent of the skipjack landed by the California-based fleet. These vessels fished for tuna throughout the year and covered virtually all of the area from southern California to northern Chile. The purse-seine fishery for tunas developed out of the round-haul net fisheries for California sardines and other species. Scofield (1951) gives a detailed description of the development of gear and fishing methods. Prior to 1959 many of the seiners engaged in other fisheries during the fall and early winter months and consequently most of the fishing effort for tuna occurred in the period February-August. The vessels were quite small, averaging approximately 120 tons carrying capacity (Broadhead and Marshall, 1960), in comparison to the baitboats, of which the most numerous size-class was 201-300 tons. The seiners were naturally more restricted in range than the baitboats and most of their effort was restricted to the northern grounds. During the period 1959-61 most of the large baitboats were converted for purse-seining and the existing seiner fleet was modernized. These developments increased the range of the seiner fleet and resulted in a wider and more nearly even spatial and temporal distribution of effort. By the early part of 1961, the purse-seine fleet approximated the level of the preconversion baitboat fleet in amount of effort applied and area covered. The changes in the purse-seine fishery and the fishing methods employed in the modernized fleet are described by Orange and Broadhead (1959), Broadhead and Marshall (1960), McNeely (1961) and Broadhead (1962). The change in the relative importance of the two gears is illustrated by the decline in the proportion of the total logged tonnage landed by California-based baitboats, in comparison to the proportion landed by seiners. In 1959 baitboats landed 49.5 per cent of the yellowfin and 87.8 per cent of the skipjack. In 1960 these percentages were 22.9 and 74.7 respectively and in 1961 the decline continued to 12.6 per cent of the yellowfin and 30.0 per cent of the skipjack (Schaefer, 1962). In previous Bulletins of this Commission (Griffiths, 1960; Calkins, 1961) the baitboat catch and effort statistics were used to compute two indices of population density and an index of concentration of fishing effort and the fluctuations of these indices were analyzed in some detail. Due to the change in the relative importance of the two gears it is appropriate to extend this investigation to include the purse-seine data. The objectives of this paper are to compute two indices of population density and an index of concentration of fishing effort and to examine the fluctuations in these indices before and after the changes in the fishery. A further objective is to compare the purse-seine indices with those of the baitboats for the same time periods. SPANISH: En el Océano Pacífico Oriental casi todas las capturas comerciales del atún aleta amarilla (Thunnus albacares) y del barrilete (Katsuwonus pelamis) son efectuadas por dos tipos de barcos, los barcos de carnada que emplean la caña y el anzuelo en conjunto con la carnada viva, y los barcos rederos. Desde su comienzo hasta hace poco tiempo (1959), esta pesquería estaba dominada por los barcos de carnada. El método de pesca usado por estos barcos ha sido descrito por Godsil (1938) y por Shimada y Schaefer (1956). De 1951 a 1958, los barcos de carnada pescaron entre el 66.4 y el 90.8 por ciento del atún aleta amarilla y entre el 87.2 y el 95.3 por ciento del barrilete descargados por la flota que tiene su base en California. Estos barcos pescaron atún durante todo el año y cubrieron virtualmente toda el área de California meridional hasta la parte norte de Chile. La pesquería del atún con redes de cerco se originó en las pesquerías de las sardinas de California y otras especies, con redes que se remolcaban circularmente. Scofield (1951) dá una descripción detallada del desarrollo de los métodos y del equipo de pesca. Antes de 1959 muchos de los rederos se dedicaban a otras pesquerías durante los meses del otoño y a principios del invierno y consecuentemente, la mayor parte del esfuerzo depesca para la producción del atún ocurría en el período febrero-agosto. Las embarcaciones eran bastante pequeñas, con un promedio de aproximadamente 120 toneladas de capacidad para el transporte (Broadhead y Marshall, 1960) en comparación con los barcos de carnada, de los cuales la clase de tamaño más numerosa era de 201 a 300 toneladas. Los rederos estaban naturalmente más restringidos en su radio de acción que los barcos de carnada y la mayor parte de su esfuerzo se limitaba a las localidades del norte. Durante el período 1959-61, la mayoría de los grandes barcos de carnada fueron convertidos al sistema de pesca con redes de cerco, y se modernizó la flota existente de los rederos. Estos cambios aumentaron el alcance de la flota de los barcos rederos dando como resultado una distribución más amplia y casi más uniforme del esfuerzo espaciado y temporal. En la primera parte del año 1961, la flota de rederos se aproximó al nivel de la preconversión de la flota de clipers, en la cantidad de esfuerzo aplicado y al área comprendida. Los cambios en la pesquería con red y los métodos de pesca empleados en la flota modernizada, han sido descritos por Orange y Broadhead (1959), Broadl1ead y Marshall (1960), McNeely (1961) y Broadhead (1962). El cambio en la importancia relativa de los dos sistemas de pesca está ilustrado por la declinación en la proporción del tonelaje total registrado, como descargado por los barcos de carnada que tienen su base en California, comparado con la proporción desembarcada por los barcos rederos. En 1959 los clipers descargaron el 49.5 por ciento del atún aleta amarilla y el 87.8 por ciento del barrilete. En 1960 estos porcentajes fueron del 22.9 y 74.7 respectivamente, y en 1961 continuó la reducción hasta el 12.6 por ciento del atún aleta amarilla y el 30.0 por ciento del barrilete (Schaefer, 1962). En Boletines anteriores de la Comisión (Griffiths, 1960; Calkins, 1961) las estadísticas de la pesca y el esfuerzo de los clipers se utilizaron para computar dos índices de la densidad de población y un índice de la concentración del esfuerzo de pesca, y se analizaron algo detalladamente las fluctuaciones de estos índices. Debido al cambio en la importancia relativa de los dos sistemas de pesca, es conveniente extender esta investigación para incluir los datos correspondientes a los barcos rederos. Los objetivos del presente estudio son de computar dos índices de la densidad de población y un índice de la concentración del esfuerzo de pesca, y examinar las fluctuaciones en estos índices, antes y después de los cambios en la pesquería. Otro objetivo es de comparar los índices de los barcos rederos, con aquellos de los clipers en los mismos períodos de tiempo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ENGLISH: Age composition of catch, and growth rate, of yellowfin tuna have been estimated by Hennemuth (1961a) and Davidoff (1963). The relative abundance and instantaneous total mortality rate of yellowfin tuna during 1954-1959 have been estimated by Hennenmuth (1961b). It is now possible to extend this work, because more data are available; these include data for 1951-1954, which were previously not available, and data for 1960-1962, which were collected subsequent to Hennemuth's (1961b) publication. In that publication, Hennemuth estimated the total instantaneous mortality rate (Z) during the entire time period a year class is present in the fishery following full recruitment. However, this method may lead to biased estimates of abundance, and hence mortality rates, because of both seasonal migrations into or out of specific fishing areas and possible seasonal differences in availability or vulnerability of the fish to the fishing gear. Schaefer, Chatwin and Broadhead (1961) and Joseph etl al. (1964) have indicated that seasonal migrations of yellowfin occur. A method of estimating mortality rates which is not biased by seasonal movements would be of value in computations of population dynamics. The method of analysis outlined and used in the present paper may obviate this bias by comparing the abundance of an individual yellowfin year class, following its period of maximum abundance, in an individual area during a specific quarter of the year with its abundance in the same area one year later. The method was suggested by Gulland (1955) and used by Chapman, Holt and Allen (1963) in assessing Antarctic whale stocks. This method, and the results of its use with data for yellowfin caught in the eastern tropical Pacific from 1951-1962 are described in this paper. SPANISH: La composición de edad de la captura, y la tasa de crecimiento del atún aleta amarilla, han sido estimadas por Hennemuth (1961a) y Davidoff (1963). Hennemuth (1961b), estimó la abundancia relativa y la tasa de mortalidad total instantánea del atún aleta amarilla durante 1954-1959. Se puede ampliar ahora, este trabajo, porque se dispone de más datos; éstos incluyen datos de 1951 1954, de los cuales no se disponía antes, y datos de 1960-1962 que fueron recolectados después de la publicación de Hennemuth (1961b). En esa obra, Hennemuth estimó la tasa de mortalidad total instantánea (Z) durante todo el período de tiempo en el cual una clase anual está presente en la pesquería, consecutiva al reclutamiento total. Sin embargo, este método puede conducir a estimaciones con bias (inclinación viciada) de abundancia, y de aquí las tasas de mortalidad, debidas tanto a migraciones estacionales dentro o fuera de las áreas determinadas de pesca, como a posibles diferencias estacionales en la disponibilidad y vulnerabilidad de los peces al equipo de pesca. Schaefer, Chatwin y Broadhead (1961) y Joseph et al. (1964) han indicado que ocurren migraciones estacionales de atún aleta amarilla. Un método para estimar las tasas de mortalidad el cual no tuviera bias debido a los movimientos estacionales, sería de valor en los cómputos de la dinámica de las poblaciones. El método de análisis delineado y usado en el presente estudio puede evitar este bias al comparar la abundancia de una clase anual individual de atún aleta amarilla, subsecuente a su período de abundancia máxima en un área individual, durante un trimestre específico del año, con su abundancia en la misma área un año más tarde. Este método fue sugerido por Gulland (1955) y empleado por Chapman, Holt y Allen (1963) en la declaración de los stocks de la ballena antártica. Este método y los resultados de su uso, en combinación con los datos del atún aleta amarilla capturado en el Pacífico oriental tropical desde 1951-1962, son descritos en este estudio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ENGLISH:Length-frequency samples of yellowfin tuna from 276 individual purse-seine sets were examined. Evidence of schooling by size is presented. Yellowfin schooled with skipjack are smaller and more homogeneous in length than are yellowfin from pure schools. Yellowfin in schools associated with porpoise appear to be more variable in size than yellowfin from other types of schools. No relationship was found between the tonnage of yellowfin in a school and the mean length of the yellowfin. Despite the tendency to school by size, the size variation within individual schools was judged to be enough to complicate greatly any program of regulation aimed at maximizing the yield-per-recruit through increasing the minimum size of yellowfin at first capture. SPANISH: Fueron examinadas las muestras frecuencia-longitud de atún aleta amarilla, de 276 lances individuales de redes de cerco. Se presenta la evidencia de agrupación por tamaños. Los atunes aleta amarilla agrupados con barrilete, son más pequeños y más homogéneos en longitud, que los atunes aleta amarilla de cardúmenes puros. El atún aleta amarilla en cardúmenes asociados con delfines parece ser más variable en tamaño, que el atún aleta amarilla proveniente de otros tipos de cardúmenes. No se encontró relac¡'ón entre el tonelaje del atún aleta amarilla en un cardumen y la longitud media de esta especie. A pesar de la tendencia a agruparse por tamaño, se juzgó, que la variación de tamaño en cardúmenes individuales, sería suficiente para complicar grandemente cualquier programa de reglamentación, dirigido a obtener el máximo del rendimiento por recluta a través del incremento del tamaño mínimo del atún aleta amarilla en la primera captura.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ENGLISH: Most of the catches of yellowfin and skipjack tuna from the Eastern Pacific Ocean are made by vessels fishing with poles and lines and live bait. From 1931 to 1954, these baitboats, on the average, accounted for over three-fourths of the total annual California landings of yellowfin and skipjack (Shimada and Schaefer, 1956). With the substantial increase in recent years in the production of the tropical tunas, there have been greater demands for live bait. This increased need for larger amounts of baitfishes has given rise to important questions relating to the manner in which these populations may be most wisely used. The Inter-American Tropical Tuna Commission has been concerned with various aspects of this problem since its establishment in 1950. This report presents some of the results obtained from the Commission's studies of the baitfishes important to the fishery for yellowfin and skipjack tuna. It traces briefly the origin and development of the bait fishery, describes its operations, extent, and yield, and discusses some aspects of the effects of exploitation upon the Eastern Pacific baitfish populations, particularly of the anchoveta (Cetengaulis mysticetus). SPANISH: Los barcos que emplean cañas y cuerdas y carnada viva, son los que realizan la mayor parte de la pesca de atún aleta amarilla y barrilete en el Océano Pacifíco Oriental. De 1931 a 1954 estos barcos han desembarcado, en promedio, más de las tres cuartas partes de las pescas anuales de ambas especies (Shimada y Schaefer, 1956). Con el aumento sustancial en dicha producción en los últimos años, ha habido una mayor demanda por carnada viva. Esta creciente necesidad de obtener cantidades mayores de pecescebo, ha originado importantes cuestiones relativas a la mejor forma en que estas poblaciones pueden ser utilizadas. A la Comisión Interamericana del Atún Tropical le ha tocado ocuparse de varios aspectos de este problema, desde que fué establecida en el año 1950. Este informe ofrece algunos de los resultados obtenidos a través de los estudios de la Comisión sobre los peces-cebo importantes para la pesquería de atún aleta amarilla y barrilete; señala brevemente el origen y desarrollo de la pesquería de carnada; describe sus operaciones, extensión y rendimiento, y trata algunos aspectos de los efectos de la explotación sobre las poblaciones de dichos peces en el Pacifíco Oriental, particularmente de la anchoveta (Cetengraulis mysticetus). (PDF contains 59 pages.)