986 resultados para Indian Economy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To reduce the cost of disposal of large quantities of fly ash generated and environmental problems associated with it, efforts are made to utilize fly ash for geotechnical applications. Geotechnical properties of fly ash play a key role in enhancing their application. Physical properties and chemical composition control the index properties arid engineering behaviour. The paper brings out the rob of surface area, surface characteristics, reactive silica and lime content of fly ashes on index, compaction, consolidation and strength properties of fly ashes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The esterification of stearic acid with p-cresol using modified Indian bentonite clay catalysts has been reported. The reaction was studied over exchanged clays, acid activated clays, exchanged acid activated clays, aluminium pillared clay, aluminium pillared acid activated clay, molecular sieve Al-MCM-41, zeolite H beta, ZrO2, S-ZrO2, p-TSA, montmorillonite K10, and montmorillonite KSF in o-xylene for 6 h. The catalysts were characterized by X-ray diffraction and surface area measurements. The acidity was determined by n-butylamine back-titration method and DRIFTS after pyridine adsorption. Acid activated Indian bentonite (AAIB) was found to be a better catalyst compared to other catalysts in the esterification of stearic acid with p-cresol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two-stage methodology is developed to obtain future projections of daily relative humidity in a river basin for climate change scenarios. In the first stage, Support Vector Machine (SVM) models are developed to downscale nine sets of predictor variables (large-scale atmospheric variables) for Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (SRES) (A1B, A2, B1, and COMMIT) to R (H) in a river basin at monthly scale. Uncertainty in the future projections of R (H) is studied for combinations of SRES scenarios, and predictors selected. Subsequently, in the second stage, the monthly sequences of R (H) are disaggregated to daily scale using k-nearest neighbor method. The effectiveness of the developed methodology is demonstrated through application to the catchment of Malaprabha reservoir in India. For downscaling, the probable predictor variables are extracted from the (1) National Centers for Environmental Prediction reanalysis data set for the period 1978-2000 and (2) simulations of the third-generation Canadian Coupled Global Climate Model for the period 1978-2100. The performance of the downscaling and disaggregation models is evaluated by split sample validation. Results show that among the SVM models, the model developed using predictors pertaining to only land location performed better. The R (H) is projected to increase in the future for A1B and A2 scenarios, while no trend is discerned for B1 and COMMIT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During summer, the northern Indian Ocean exhibits significant atmospheric intraseasonal variability associated with active and break phases of the monsoon in the 30-90 days band. In this paper, we investigate mechanisms of the Sea Surface Temperature (SST) signature of this atmospheric variability, using a combination of observational datasets and Ocean General Circulation Model sensitivity experiments. In addition to the previously-reported intraseasonal SST signature in the Bay of Bengal, observations show clear SST signals in the Arabian Sea related to the active/break cycle of the monsoon. As the atmospheric intraseasonal oscillation moves northward, SST variations appear first at the southern tip of India (day 0), then in the Somali upwelling region (day 10), northern Bay of Bengal (day 19) and finally in the Oman upwelling region (day 23). The Bay of Bengal and Oman signals are most clearly associated with the monsoon active/break index, whereas the relationship with signals near Somali upwelling and the southern tip of India is weaker. In agreement with previous studies, we find that heat flux variations drive most of the intraseasonal SST variability in the Bay of Bengal, both in our model (regression coefficient, 0.9, against similar to 0.25 for wind stress) and in observations (0.8 regression coefficient); similar to 60% of the heat flux variation is due do shortwave radiation and similar to 40% due to latent heat flux. On the other hand, both observations and model results indicate a prominent role of dynamical oceanic processes in the Arabian Sea. Wind-stress variations force about 70-100% of SST intraseasonal variations in the Arabian Sea, through modulation of oceanic processes (entrainment, mixing, Ekman pumping, lateral advection). Our similar to 100 km resolution model suggests that internal oceanic variability (i.e. eddies) contributes substantially to intraseasonal variability at small-scale in the Somali upwelling region, but does not contribute to large-scale intraseasonal SST variability due to its small spatial scale and random phase relation to the active-break monsoon cycle. The effect of oceanic eddies; however, remains to be explored at a higher spatial resolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arabian Sea Mini Warm Pool (ASMWP) is a part of the Indian Ocean Warm Pool and formed in the eastern Arabian Sea prior to the onset of the summer monsoon season. This warm pool attained its maximum intensity during the pre-monsoon season and dissipated with the commencement of summer monsoon. The main focus of the present work was on the triggering of the dissipation of this warm pool and its relation to the onset of summer monsoon over Kerala. This phenomenon was studied utilizing NCEP/NCAR (National Center for Environmental Prediction/National Center for Atmospheric and Research) re-analysis data, TRMM Micro wave Imager (TMI) and observational data. To define the ASMWP, sea surface temperature exceeding 30.25A degrees C was taken as the criteria. The warm pool attained its maximum dimension and intensity nearly 2 weeks prior to the onset of summer monsoon over Kerala. Interestingly, the warm pool started its dissipation immediately after attaining its maximum core temperature. This information can be included in the present numerical models to enhance the prediction capability. It was also found that the extent and intensity of the ASMWP varied depending on the type of monsoon i.e., excess, normal, and deficient monsoon. Maximum core temperature and wide coverage of the warm pool observed during the excess monsoon years compared to normal and deficient monsoon years. The study also revealed a strong relationship between the salinity in the eastern Arabian Sea and the nature of the monsoon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent generic rearrangement of the circumtropical distributed skink genus `Mabuya' has raised a lot of debate. According to this molecular phylogeny based rearrangement, the tropical Asian members of this genus have been assigned to Eutropis. However, in these studies the Asian members of `Mabuya' were largely sampled from Southeast (SE) Asia with very few species from Indian subcontinent. To test the validity of this assignment and to determine the evolutionary origin of Indian members of this group we sequenced one nuclear and two mitochondrial genes from most of the species from the Indian subregion. The nuclear and mitochondrial trees generated from these sequences confirmed the monophyly of the tropical Asian Eutropis. Furthermore, in the tree based on the combined mitochondrial and nuclear dataset an endemic Indian radiation was revealed that was nested within a larger Asian clade. Results of dispersal-vicariance analysis and molecular dating suggested an initial dispersal of Eutropis from SE Asia into India around 5.5-17 million years ago, giving rise to the extant members of the endemic Indian radiation. This initial dispersal was followed by two back dispersals from India into SE Asia. We also discuss the relationships within the endemic Indian radiation and its taxonomic implications. (c) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Waardenburg syndrome (WS) is characterized by sensorineural hearing loss and pigmentation defects of the eye, skin, and hair. It is caused by mutations in one of the following genes: PAX3 (paired box 3), MITF (microphthalmia-associated transcription factor), EDNRB (endothelin receptor type B), EDN3 (endothelin 3), SNAI2 (snail homolog 2, Drosophila) and SOX10 (SRY-box containing gene 10). Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by mutations in the DMD gene. The purpose of this study was to identify the genetic causes of WS and DMD in an Indian family with two patients: one affected with WS and DMD, and another one affected with only WS. Methods: Blood samples were collected from individuals for genomic DNA isolation. To determine the linkage of this family to the eight known WS loci, microsatellite markers were selected from the candidate regions and used to genotype the family. Exon-specific intronic primers for EDN3 were used to amplify and sequence DNA samples from affected individuals to detect mutations. A mutation in DMD was identified by multiplex PCR and multiplex ligation-dependent probe amplification method using exon-specific probes. Results: Pedigree analysis suggested segregation of WS as an autosomal recessive trait in the family. Haplotype analysis suggested linkage of the family to the WS4B (EDN3) locus. DNA sequencing identified a novel missense mutation p.T98M in EDN3. A deletion mutation was identified in DMD. Conclusions: This study reports a novel missense mutation in EDN3 and a deletion mutation in DMD in the same Indian family. The present study will be helpful in genetic diagnosis of this family and increases the mutation spectrum of EDN3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, an effort has been made to study heavy rainfall events during cyclonic storms over Indian Ocean. This estimate is based on microwave observations from tropical rainfall measuring mission (TRMM) Microwave Imager (TMI). Regional scattering index (SI) developed for Indian region based on measurements at 19-, 21- and 85-GHz brightness temperature and polarization corrected temperature (PCT) at 85 GHz have been utilized in this study. These PCT and SI are collocated against Precipitation Radar (PR) onboard TRMM to establish a relationship between rainfall rate, PCT and SI. The retrieval technique using both linear and nonlinear regressions has been developed utilizing SI, PCT and the combination of SI and PCT. The results have been compared with the observations from PR. It was found that a nonlinear algorithm using combination of SI and PCT is more accurate than linear algorithm or nonlinear algorithm using either SI or PCT. Statistical comparison with PR exhibits the correlation coefficients (CC) of 0.68, 0.66 and 0.70, and root mean square error (RMSE) of 1.78, 1.96 and 1.68 mm/h from the observations of SI, PCT and combination of SI and PCT respectively using linear regressions. When nonlinear regression is used, the CC of 0.73, 0.71, 0.79 and RMSE of 1.64, 1.95, 1.54 mm/h are observed from the observations of SI, PCT and combination of SI and PCT, respectively. The error statistics for high rain events (above 10 mm/h) shows the CC of 0.58, 0.59, 0.60 and RMSE of 5.07, 5.47, 5.03 mm/h from the observations of SI, PCT and combination of SI and PCT, respectively, using linear regression, and on the other hand, use of nonlinear regression yields the CC of 0.66, 0.64, 0.71 and RMSE of 4.68, 5.78 and 4.02 mm/h from the observations of SI, PCT and combined SI and PCT, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Indian region is presently the second region after the Neotropics in terms of diversity of phalangopsid crickets. Yet their study is impeded by the lack of necessary taxonomic tools for taxon identification. In the present paper, all generic diagnoses are clarified, using morphological and genitalic characters; female genitalia are described and illustrated for all genera with known females. New taxa are described from southern India: Kempiola flavipunctatus Desutter-Grandcolas n. sp., Opiliosina meridionalis Desutter-Grandcolas n. gen., n. sp., Phalangopsina bolivari Desutter-Grandcolas n. sp., P. chopardi Desutter-Grandcolas n. sp., P. gravelyi Desutter-Grandcolas n. sp., and Speluncasina Desutter-Grandcolas n. gen. The list of phalangopsid crickets from the Indian Region is updated, and a key to phalangopsid genera proposed. A lectotype and a paralectotype are designated to fix the name of Phalangopsina dubia (Bolivar, 1900). Opilionacris annandalei Chopard, 1928, previously transferred to the African genus Phaeophilacris Walker, 1871, is transferred to the genus Speluncasina Desutter-Grandcolas n. gen., while Larandopsis jharnae Bhowmik, 1981 and L. newguineae Bhowmik, 1981 described from New Guinea are transferred to the eneopterine genus Lebinthus Stal, 1877. Finally Luzaropsis confusa Chopard, 1969 is removed from its synonymy with L. ferruginea Walker, 1871.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The financial crisis set off by the default of Lehman Brothers in 2008 leading to disastrous consequences for the global economy has focused attention on regulation and pricing issues related to credit derivatives. Credit risk refers to the potential losses that can arise due to the changes in the credit quality of financial instruments. These changes could be due to changes in the ratings, market price (spread) or default on contractual obligations. Credit derivatives are financial instruments designed to mitigate the adverse impact that may arise due to credit risks. However, they also allow the investors to take up purely speculative positions. In this article we provide a succinct introduction to the notions of credit risk, the credit derivatives market and describe some of the important credit derivative products. There are two approaches to pricing credit derivatives, namely the structural and the reduced form or intensity-based models. A crucial aspect of the modelling that we touch upon briefly in this article is the problem of calibration of these models. We hope to convey through this article the challenges that are inherent in credit risk modelling, the elegant mathematics and concepts that underlie some of the models and the importance of understanding the limitations of the models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the impact of the Indian Ocean Dipole (IOD) and El Nino and the Southern Oscillation (ENSO) on sea level variations in the North Indian Ocean during 1957-2008. Using tide-gauge and altimeter data, we show that IOD and ENSO leave characteristic signatures in the sea level anomalies (SLAs) in the Bay of Bengal. During a positive IOD event, negative SLAs are observed during April-December, with the SLAs decreasing continuously to a peak during September-November. During El Nino, negative SLAs are observed twice (April-December and November-July), with a relaxation between the two peaks. SLA signatures during negative IOD and La Nina events are much weaker. We use a linear, continuously stratified model of the Indian Ocean to simulate their sea level patterns of IOD and ENSO events. We then separate solutions into parts that correspond to specific processes: coastal alongshore winds, remote forcing from the equator via reflected Rossby waves, and direct forcing by interior winds within the bay. During pure IOD events, the SLAs are forced both from the equator and by direct wind forcing. During ENSO events, they are primarily equatorially forced, with only a minor contribution from direct wind forcing. Using a lead/lag covariance analysis between the Nino-3.4 SST index and Indian Ocean wind stress, we derive a composite wind field for a typical El Nino event: the resulting solution has two negative SLA peaks. The IOD and ENSO signatures are not evident off the west coast of India.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study the planetary-scale wave features using concurrent observations of mesospheric wind and temperature, ionospheric h'F, and tropospheric wind from Tirunelveli, Gadanki, and Kolhapur, all located in the Indian low latitudes, made during February 2009. Our investigations reveal that 3 to 5 day periodicity, characterized as ultrafast Kelvin (UFK) waves, was persistent throughout the atmosphere during this period. These waves show clear signatures of upward wave propagation from troposphere to the upper mesosphere, linking the ionosphere through a clear correlation between mesospheric winds and h'F variations. We also note that the amplitude of this wave decreased as we moved away from the equator. These results are the first of their kind from Indian sector, portraying the vertical as well as latitudinal characteristics of the 3 to 5 day UFK waves simultaneously from the troposphere to the ionosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new solid state synthetic route has been developed toward metal and bimetallic alloy nanoparticles from metal salts employing amine-boranes, as the reducing agent. During the reduction, amine-borane plays a dual role: acts as a reducing agent and reduces the metal salts to their elemental form and simultaneously generates a stabilizing agent in situ which controls the growth of the particles and stabilizes them in the nanosize regime. Employing different amine-boranes with differing reducing ability (ammonia borane (AB), dimethylamine borane (DMAB), and triethylamine borane (TMAB)) was found to have a profound effect on the particle size and the size distribution. Usage of AB as the reducing agent provided the smallest possible size with best size distribution. Employment of TMAB also afforded similar results; however, when DMAB was used as the reducing agent it resulted in larger sized nanoparticles that are polydisperse too. In the AB mediated reduction, BNHx polymer generated in situ acts as a capping agent whereas, the complexing amine of the other amine-boranes (DMAB and TMAB) play the same role. Employing the solid state route described herein, monometallic Au, Ag, Cu, Pd, and Ir and bimetallic CuAg and CuAu alloy nanoparticles of <10 nm were successfully prepared. Nucleation and growth processes that control the size and the size distribution of the resulting nanoparticles have been elucidated in these systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Precise specification of the vertical distribution of cloud optical properties is important to reduce the uncertainty in quantifying the radiative impacts of clouds. The new global observations of vertical profiles of clouds from the CloudSat mission provide opportunities to describe cloud structures and to improve parameterization of clouds in the weather and climate prediction models. In this study, four years (2007-2010) of observations of vertical structure of clouds from the CloudSat cloud profiling radar have been used to document the mean vertical structure of clouds associated with the Indian summer monsoon (ISM) and its intra-seasonal variability. Active and break monsoon spells associated with the intra-seasonal variability of ISM have been identified by an objective criterion. For the present analysis, we considered CloudSat derived column integrated cloud liquid and ice water, and vertically profiles of cloud liquid and ice water content. Over the South Asian monsoon region, deep convective clouds with large vertical extent (up to 14 km) and large values of cloud water and ice content are observed over the north Bay of Bengal. Deep clouds with large ice water content are also observed over north Arabian Sea and adjoining northwest India, along the west coast of India and the south equatorial Indian Ocean. The active monsoon spells are characterized by enhanced deep convection over the Bay of Bengal, west coast of India and northeast Arabian Sea and suppressed convection over the equatorial Indian Ocean. Over the Bay of Bengal, cloud liquid water content and ice water content is enhanced by similar to 90 and similar to 200 % respectively during the active spells. An interesting feature associated with the active spell is the vertical tilting structure of positive CLWC and CIWC anomalies over the Arabian Sea and the Bay of Bengal, which suggests a pre-conditioning process for the northward propagation of the boreal summer intra-seasonal variability. It is also observed that during the break spells, clouds are not completely suppressed over central India. Instead, clouds with smaller vertical extent (3-5 km) are observed due to the presence of a heat low type of circulation. The present results will be useful for validating the vertical structure of clouds in weather and climate prediction models.