941 resultados para In-plane Shear
Resumo:
We investigate barotropic perfect fluid cosmologies which admit an isotropic singularity. From the General Vorticity Result of Scott, it is known that these cosmologies must be irrotational. In this paper we prove, using two different methods, that if we make the additional assumption that the perfect fluid is shear-free, then the fluid flow must be geodesic. This then implies that the only shear-free, barotropic, perfect fluid cosmologies which admit an isotropic singularity are the FRW models.
Resumo:
Shear deformation of fault gouge or other particulate materials often results in observed strain localization, or more precisely, the localization of measured deformation gradients. In conventional elastic materials the strain localization cannot take place therefore this phenomenon is attributed to special types of non-elastic constitutive behaviour. For particulate materials however the Cosserat continuum which takes care of microrotations independent of displacements is a more appropriate model. In elastic Cosserat continuum the localization in displacement gradients is possible under some combinations of the generalized Cosserat elastic moduli. The same combinations of parameters also correspond to a considerable dispersion in shear wave propagation which can be used for independent experimental verification of the proposed mechanism of apparent strain localization in fault gouge.
Resumo:
The purpose of this study was to describe the patterns of pelvic rotational asymmetry in the transverse plane and identify the possible factors related to this problem. One thousand and forty-five patients with cerebral palsy (CP) and complete documentation in the gait laboratory were reviewed in a retrospective study. Pelvic asymmetry in the transverse plane was observed in 52.7% of the patients; and to identify the possible causes of pelvic retraction, clinical (Thomas test, popliteal angle, and gastrocnemius tightness) and dynamic parameters (mean rotation of the hip in stance, minimum hip flexion, minimum knee flexion, and peak ankle dorsiflexion) were evaluated. The association between these parameters and pelvic retraction was assessed statistically. The results showed that 75.7% of patients with asymmetric pattern of the pelvis had clinical diagnosis of diplegic spastic CP. Among the patients with asymmetrical CP, the most common pattern was pelvic retraction on the affected side. The relationship between pelvic retraction and internal hip rotation was stronger in patients with asymmetrical diplegic CP than in those with hemiplegic (P<0.001) or symmetrical diplegic CP (P=0.014). All of the patients exhibited a significant association among clinical parameters (Thomas test, popliteal angle, and gastrocnemius tightness) and pelvic retraction. In conclusion, pelvic retraction seems to be a multifactorial problem, and the etiology can change according to topographic classification, which must be taken into account during the decision-making process in patients with CP. J Pediatr Orthop B 18:320-324 (C) 2009 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.
Resumo:
It has been argued that power-law time-to-failure fits for cumulative Benioff strain and an evolution in size-frequency statistics in the lead-up to large earthquakes are evidence that the crust behaves as a Critical Point (CP) system. If so, intermediate-term earthquake prediction is possible. However, this hypothesis has not been proven. If the crust does behave as a CP system, stress correlation lengths should grow in the lead-up to large events through the action of small to moderate ruptures and drop sharply once a large event occurs. However this evolution in stress correlation lengths cannot be observed directly. Here we show, using the lattice solid model to describe discontinuous elasto-dynamic systems subjected to shear and compression, that it is for possible correlation lengths to exhibit CP-type evolution. In the case of a granular system subjected to shear, this evolution occurs in the lead-up to the largest event and is accompanied by an increasing rate of moderate-sized events and power-law acceleration of Benioff strain release. In the case of an intact sample system subjected to compression, the evolution occurs only after a mature fracture system has developed. The results support the existence of a physical mechanism for intermediate-term earthquake forecasting and suggest this mechanism is fault-system dependent. This offers an explanation of why accelerating Benioff strain release is not observed prior to all large earthquakes. The results prove the existence of an underlying evolution in discontinuous elasto-dynamic, systems which is capable of providing a basis for forecasting catastrophic failure and earthquakes.
Resumo:
We develop a method for determining the elements of the pressure tensor at a radius r in a cylindrically symmetric system, analogous to the so-called method of planes used in planar systems [B. D. Todd, Denis J. Evans, and Peter J. Daivis, Phys. Rev. E 52, 1627 (1995)]. We demonstrate its application in determining the radial shear stress dependence during molecular dynamics simulations of the forced flow of methane in cylindrical silica mesopores. Such expressions are useful for the examination of constitutive relations in the context of transport in confined systems.
Resumo:
We analyze the sequences of round-off errors of the orbits of a discretized planar rotation, from a probabilistic angle. It was shown [Bosio & Vivaldi, 2000] that for a dense set of parameters, the discretized map can be embedded into an expanding p-adic dynamical system, which serves as a source of deterministic randomness. For each parameter value, these systems can generate infinitely many distinct pseudo-random sequences over a finite alphabet, whose average period is conjectured to grow exponentially with the bit-length of the initial condition (the seed). We study some properties of these symbolic sequences, deriving a central limit theorem for the deviations between round-off and exact orbits, and obtain bounds concerning repetitions of words. We also explore some asymptotic problems computationally, verifying, among other things, that the occurrence of words of a given length is consistent with that of an abstract Bernoulli sequence.
Resumo:
In this work, a repair technique with adhesively bonded carbon-epoxy patches is proposed for wood members damaged by horizontal shear and under bending loads. This damage is characterized by horizontal crack growth near the neutral plane of the wood beam, normally originating from checks and shakes. The repair consists of adhesively bonded carbon-epoxy patches on the vertical side faces of the beam at the cracked region to block sliding between the beam arms. An experimental and numerical parametric analysis was performed on the patch length. The numerical analysis used the finite element method (FEM) and cohesive zone models (CZMs), with an inverse modelling technique for the characterization of the adhesive layer. Trapezoidal cohesive laws in each pure mode were used to account for the ductility of the adhesive used. To fully reproduce the tests, horizontal damage propagation within the wood beam was also simulated. A good correlation with the experiments was found. Regarding the effectiveness of the repair, for the conditions selected for this work, a full strength recovery was achieved for the bigger value of patch length tested.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Biomédica. A presente dissertação foi desenvolvida no Erasmus Medical Center em Roterdão, Holanda
Resumo:
The current study aimed to compare the shoulder kinematics (3D scapular orientation, scapular angular displacement and scapulohumeral rhythm) of asymptomatic participants under unloaded and loaded conditions during unilateral shoulder elevation in the scapular plane. We used a repeated-measures design with a convenience sample. Eleven male participants with an age range of 21–28 years with no recent history of shoulder injury participated in the study. The participants performed isometric shoulder elevation from a neutral position to approximately 150 degrees of elevation in the scapular plane in intervals of approximately 30 degrees during unloaded and loaded conditions. Shoulder kinematic data were obtained with videogrammetry. During shoulder elevation, the scapula rotated upwardly and externally, and tilted posteriorly. The addition of an external load did not affect 3D scapular orientation, scapular angular displacement, or scapulohumeral rhythm throughout shoulder elevation (P > .05). In clinical practice, clinicians should expect to observe upward and external rotation and posterior tilt of the scapula during their assessments of shoulder elevation. Such behavior was not influenced by an external load normalized to 5% of body weight when performed in an asymptomatic population.
Resumo:
Proceedings of the 10th Conference on Dynamical Systems Theory and Applications
Resumo:
This paper presents the numerical simulations of the punching behaviour of centrally loaded steel fibre reinforced self-compacting concrete (SFRSCC) flat slabs. Eight half scaled slabs reinforced with different content of hooked-end steel fibres (0, 60, 75 and 90 kg/m3) and concrete strengths of 50 and 70 MPa were tested and numerically modelled. Moreover, a total of 54 three-point bending tests were carried out to assess the post-cracking flexural tensile strength. All the slabs had a relatively high conventional flexural reinforcement in order to promote the occurrence of punching failure mode. Neither of the slabs had any type of specific shear reinforcement rather than the contribution of the steel fibres. The numerical simulations were performed according to the Reissner-Mindlin theory under the finite element method framework. Regarding the classic formulation of the Reissner-Mindlin theory, in order to simulate the progressive damage induced by cracking, the shell element is discretized into layers, being assumed a plane stress state in each layer. The numerical results are, then, compared with the experimental ones and it is possible to notice that they accurately predict the experimental force-deflection relationship. The type of failure observed experimentally was also predicted in the numerical simulations.
Resumo:
Recent research is showing that the addition of Recycled Steel Fibres (RSF) from wasted tyres can decrease significantly the brittle behaviour of cement based materials, by improving its toughness and post-cracking resistance. In this sense, Recycled Steel Fibre Reinforced Concrete (RSFRC) seems to have the potential to constitute a sustainable material for structural and non-structural applications. To assess this potential, experimental and numerical research was performed on the use of RSFRC in elements failing in bending and in beams failing in shear. The values of the fracture mode I parameters of the developed RSFRC were determined by performing inverse analysis with test results obtained in three point notched beam bending tests. To assess the possibility of using RSF as shear reinforcement in Reinforced Concrete (RC) beams, three point bending tests were executed with three series of RSFRC beams flexurally reinforced with a relatively high reinforcement ratio of longitudinal steel bars in order to assure shear failure for all the tested beams. By performing material nonlinear simulations with a computer program based on the finite element method (FEM), the applicability of the fracture mode I crack constitutive law derived from the inverse analysis is assessed for the prediction of the behaviour of these beams. The performance of the formulation proposed by RILEM TC 162 TDF and CEB-FIP 2010 for the prediction of the shear resistance of fibre reinforced concrete elements was also evaluated.
Resumo:
The Embedded Through-Section (ETS) technique is a promising technique for the shear strengthening of existing (RC) elements. According to this technique, holes are drilled through the beam section, and bars of steel or FRP material are introduced into these holes and bonded to the concrete with adhesive materials. An experimental program was carried out with RC T-cross section beams strengthened in shear using the ETS steel bars and ETS CFRP rods. The research is focused on the evaluation of the ETS efficiency on beams with different percentage of existing internal transverse reinforcement (ρsw=0.0%, ρsw=0.1% and ρsw=0.17%). The effectiveness of different ETS strengthening configurations was also investigated. The good bond between the strengthening ETS bars and the surrounding concrete allowed the yield initiation of the ETS steel bars and the attainment of high tensile strains in the ETS CFPR rods, leading to significant increase of shear capacity, whose level was strongly influenced by the inclination of the ETS bars and the percentage of internal transverse reinforcement.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
In this paper we prove the sharp distortion estimates for the quasiconformal mappings in the plane, both in terms of the Riesz capacities from non linear potential theory and in terms of the Hausdorff measures.