918 resultados para In situ degradability


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The properties and formation of nanotubes have been extensively studied, but very few deal with the catalytic production mechanism of nanotubes. Two different techniques, thermogravimetric analysis and UV-Raman, have been applied to analyse the carbon deposition by catalysed decomposition of acetylene over an iron-based catalyst. The nature of the produced carbon materials depends on reaction temperature. Also, TEM allows identification of carbon nanotubes, encapsulated particles, and other nanostructures, while UV-Raman confirms its graphitic and graphite-like nature. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An in-situ modified sol-gel method for the preparation of a Ni-based monolith-supported catalyst is reported. With the presence of a proper amount of plasticizer and binder, and at an optimized pH value, the stable boehmite sol was modified with metal ions (Ni, Li, La) successfully without distinct growth of the particle size. Monolith-supported Ni-based/gamma-Al2O3 catalysts were obtained using the modified sol as the coating medium with several cycles of dip-coating and calcination. Combined BET, SEM-EDS, XRD and H-2-TPR investigations demonstrated that the derived monolith catalysts had a high specific surface area, a relatively homogeneous surface composition, and a high extent of interaction between the active component and the support. These catalysts showed relatively stable catalytic activities for partial oxidation of methane (POM) to syngas under atmospheric pressure. The monolith catalysts prepared by this sol-gel method also demonstrated an improved resistance to sintering and loss of the active component during the reaction process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesoporous spinel membranes as ultrafiltration membranes were prepared through a novel sol-gel technique. By in situ modification of the sol particle surface during the sol-gel process, control of the material structure on a nanometer scale from the earliest stages of processing was realized. Nano-particles with a chocolate-nut-like morphology, i.e. spinel MgAl2O4 as a shell and gamma -Al2O3 as a core, were first revealed by HRTEM results. The formation of the spinel phase was confirmed by X-ray diffraction (XRD). N-2 adsorption-desorption results showed that the mesoporous membranes had a narrow pore size distribution. (C) 2001 Elsevier Science B.V. All rights reserved.