994 resultados para Image Simulation
Resumo:
Many texture measures have been developed and used for improving land-cover classification accuracy, but rarely has research examined the role of textures in improving the performance of aboveground biomass estimations. The relationship between texture and biomass is poorly understood. This paper used Landsat Thematic Mapper (TM) data to explore relationships between TM image textures and aboveground biomass in Rondônia, Brazilian Amazon. Eight grey level co-occurrence matrix (GLCM) based texture measures (i.e., mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment, and correlation), associated with seven different window sizes (5x5, 7x7, 9x9, 11x11, 15x15, 19x19, and 25x25), and five TM bands (TM 2, 3, 4, 5, and 7) were analyzed. Pearson's correlation coefficient was used to analyze texture and biomass relationships. This research indicates that most textures are weakly correlated with successional vegetation biomass, but some textures are significantly correlated with mature forest biomass. In contrast, TM spectral signatures are significantly correlated with successional vegetation biomass, but weakly correlated with mature forest biomass. Our findings imply that textures may be critical in improving mature forest biomass estimation, but relatively less important for successional vegetation biomass estimation.
Resumo:
A new very high-order finite volume method to solve problems with harmonic and biharmonic operators for one- dimensional geometries is proposed. The main ingredient is polynomial reconstruction based on local interpolations of mean values providing accurate approximations of the solution up to the sixth-order accuracy. First developed with the harmonic operator, an extension for the biharmonic operator is obtained, which allows designing a very high-order finite volume scheme where the solution is obtained by solving a matrix-free problem. An application in elasticity coupling the two operators is presented. We consider a beam subject to a combination of tensile and bending loads, where the main goal is the stress critical point determination for an intramedullary nail.
Resumo:
There is currently an increasing demand for robots able to acquire the sequential organization of tasks from social learning interactions with ordinary people. Interactive learning-by-demonstration and communication is a promising research topic in current robotics research. However, the efficient acquisition of generalized task representations that allow the robot to adapt to different users and contexts is a major challenge. In this paper, we present a dynamic neural field (DNF) model that is inspired by the hypothesis that the nervous system uses the off-line re-activation of initial memory traces to incrementally incorporate new information into structured knowledge. To achieve this, the model combines fast activation-based learning to robustly represent sequential information from single task demonstrations with slower, weight-based learning during internal simulations to establish longer-term associations between neural populations representing individual subtasks. The efficiency of the learning process is tested in an assembly paradigm in which the humanoid robot ARoS learns to construct a toy vehicle from its parts. User demonstrations with different serial orders together with the correction of initial prediction errors allow the robot to acquire generalized task knowledge about possible serial orders and the longer term dependencies between subgoals in very few social learning interactions. This success is shown in a joint action scenario in which ARoS uses the newly acquired assembly plan to construct the toy together with a human partner.
Resumo:
This paper deals with a computing simulation for an offshore wind energy system taking into account the influence of the marine waves action throughout the floating platform. The wind energy system has a variable-speed turbine equipped with a permanent magnet synchronous generator and a full-power five level converter, injecting energy into the electric grid through a high voltage alternate current link. A reduction on the unbalance of the voltage in the DC-link capacitors of the five-level converter is proposed by a strategic selection of the output voltage vectors. The model for the drive train of the wind energy system is a two mass model, including the dynamics of the floating platform. A case study is presented and the assessment of the quality of the energy injected into the electric grid is discussed.
Resumo:
A new integrated mathematical model for the simulation of an offshore wind system having a rectifier input voltage malfunction at one phase is presented in this paper. The mathematical model considers an offshore variable-speed wind turbine on a floating platform, equipped with a permanent magnet synchronous generator using full-power three-level converter to inject energy into the electric network, through a high voltage direct current transmission submarine cable. The model for the drive train is a discrete three mass, incorporating the dynamic of the moving surface. A case study is presented to access conclusion about the malfunction.
Resumo:
Dissertação de mestrado integrado em Mechanical Engineering
Resumo:
Given the limitations of different types of remote sensing images, automated land-cover classifications of the Amazon várzea may yield poor accuracy indexes. One way to improve accuracy is through the combination of images from different sensors, by either image fusion or multi-sensor classifications. Therefore, the objective of this study was to determine which classification method is more efficient in improving land cover classification accuracies for the Amazon várzea and similar wetland environments - (a) synthetically fused optical and SAR images or (b) multi-sensor classification of paired SAR and optical images. Land cover classifications based on images from a single sensor (Landsat TM or Radarsat-2) are compared with multi-sensor and image fusion classifications. Object-based image analyses (OBIA) and the J.48 data-mining algorithm were used for automated classification, and classification accuracies were assessed using the kappa index of agreement and the recently proposed allocation and quantity disagreement measures. Overall, optical-based classifications had better accuracy than SAR-based classifications. Once both datasets were combined using the multi-sensor approach, there was a 2% decrease in allocation disagreement, as the method was able to overcome part of the limitations present in both images. Accuracy decreased when image fusion methods were used, however. We therefore concluded that the multi-sensor classification method is more appropriate for classifying land cover in the Amazon várzea.
Resumo:
In this work, we present a 3D web-based interactive tool for numerical modeling and simulation approach to breast reduction surgery simulation, to assist surgeons in planning all aspects related to breast reduction surgery before the actual procedure takes place, thereby avoiding unnecessary risks. In particular, it allows the modeling of the initial breast geometry, the definition of all aspects related to the surgery and the visualization of the post-surgery breast shape in a realistic environment.
Resumo:
OBJECTIVE: To characterize eating habits and possible risk factors associated with eating disorders among psychology students, a segment at risk for eating disorders. METHOD: This is a cross-sectional study. The questionnaires Bulimic Investigatory Test Edinburgh (BITE), Eating Attitudes Test (EAT-26), Body Shape Questionnaire (BSQ) and a variety that considers related issues were applied. Statistical Package for the Social Sciences (SPSS) 11.0 was utilized in analysis. The study population was composed of 175 female students, with a mean age of 21.2 (DP ± 3.6 years). RESULTS: A positive result was detected on the EAT-26 for 6.9% of the cases (CI95%: 3.6-11.7%). The prevalence of increased symptoms and intense gravity, according to the BITE questionnaire was 5% (CI95%: 2.4-9.5%) and 2.5% (CI95%: 0.7-6.3%), respectively. According to the findings, 26.29% of the students presented abnormal eating behavior. The population with moderate/severe BSQ scores presented dissatisfaction with corporal weight. CONCLUSION: The results indicate that attention must be given to eating behavior risks within this group. A differentiated gaze is justified with respect to these future professionals, whose practice is jeopardized in cases in which they are themselves the bearers of installed symptoms or precursory behavior.
Resumo:
Tese de Doutoramento (Programa Doutoral em Engenharia Biomédica)
Resumo:
Objective: To evaluate body image dissatisfaction and its relationship with physical activity and body mass index in a Brazilian sample of adolescents. Methods: A total of 275 adolescents (139 boys and 136 girls) between the ages of 14 and 18 years completed measures of body image dissatisfaction through the Contour Drawing Scale and current physical activity by the International Physical Activity Questionnaire. Weight and height were also measured for subsequent calculation of body mass index. Results: Boys and girls differed significantly regarding body image dissatisfaction, with girls reporting higher levels of dissatisfaction. Underweight and eutrophic boys preferred to be heavier, while those overweight preferred be thinner and, in contrast, girls desired to be thinner even when they are of normal weight. Conclusion: Body image dissatisfaction was strictly related to body mass index, but not to physical activity.
Resumo:
Dissertação de mestrado integrado em Civil Engineering
Resumo:
This work presents a molecular-scale agent-based model for the simulation of enzymatic reactions at experimentally measured concentrations. The model incorporates stochasticity and spatial dependence, using diffusing and reacting particles with physical dimensions. We developed strategies to adjust and validate the enzymatic rates and diffusion coefficients to the information required by the computational agents, i.e., collision efficiency, interaction logic between agents, the time scale associated with interactions (e.g., kinetics), and agent velocity. Also, we tested the impact of molecular location (a source of biological noise) in the speed at which the reactions take place. Simulations were conducted for experimental data on the 2-hydroxymuconate tautomerase (EC 5.3.2.6, UniProt ID Q01468) and the Steroid Delta-isomerase (EC 5.3.3.1, UniProt ID P07445). Obtained results demonstrate that our approach is in accordance to existing experimental data and long-term biophysical and biochemical assumptions.
Resumo:
As digital imaging processing techniques become increasingly used in a broad range of consumer applications, the critical need to evaluate algorithm performance has become recognised by developers as an area of vital importance. With digital image processing algorithms now playing a greater role in security and protection applications, it is of crucial importance that we are able to empirically study their performance. Apart from the field of biometrics little emphasis has been put on algorithm performance evaluation until now and where evaluation has taken place, it has been carried out in a somewhat cumbersome and unsystematic fashion, without any standardised approach. This paper presents a comprehensive testing methodology and framework aimed towards automating the evaluation of image processing algorithms. Ultimately, the test framework aims to shorten the algorithm development life cycle by helping to identify algorithm performance problems quickly and more efficiently.