1000 resultados para ISOTHERMAL SURFACES


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We observe the formation of metastable AuGe phases without quenching, during strictly isothermal nucleation and growth of Ge nanowires, using video-rate lattice-resolved environmental transmission electron microscopy. We explain the unexpected formation of these phases through a novel pathway involving changes in composition rather than temperature. The metastable catalyst has important implications for nanowire growth, and more broadly, the isothermal process provides both a new approach to growing and studying metastable phases, and a new perspective on their formation. © 2012 American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a multispectral photometric stereo method for capturing geometry of deforming surfaces. A novel photometric calibration technique allows calibration of scenes containing multiple piecewise constant chromaticities. This method estimates per-pixel photometric properties, then uses a RANSAC-based approach to estimate the dominant chromaticities in the scene. A likelihood term is developed linking surface normal, image intensity and photometric properties, which allows estimating the number of chromaticities present in a scene to be framed as a model estimation problem. The Bayesian Information Criterion is applied to automatically estimate the number of chromaticities present during calibration. A two-camera stereo system provides low resolution geometry, allowing the likelihood term to be used in segmenting new images into regions of constant chromaticity. This segmentation is carried out in a Markov Random Field framework and allows the correct photometric properties to be used at each pixel to estimate a dense normal map. Results are shown on several challenging real-world sequences, demonstrating state-of-the-art results using only two cameras and three light sources. Quantitative evaluation is provided against synthetic ground truth data. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aside from cracks, the impact of other surface defects, such as air pockets and discoloration, can be detrimental to the quality of concrete in terms of strength, appearance and durability. For this reason, local and national codes provide standards for quantifying the quality impact of these concrete surface defects and owners plan for regular visual inspections to monitor surface conditions. However, manual visual inspection of concrete surfaces is a qualitative (and subjective) process with often unreliable results due to its reliance on inspectors’ own criteria and experience. Also, it is labor intensive and time-consuming. This paper presents a novel, automated concrete surface defects detection and assessment approach that addresses these issues by automatically quantifying the extent of surface deterioration. According to this approach, images of the surface shot from a certain angle/distance can be used to automatically detect the number and size of surface air pockets, and the degree of surface discoloration. The proposed method uses histogram equalization and filtering to extract such defects and identify their properties (e.g. size, shape, location). These properties are used to quantify the degree of impact on the concrete surface quality and provide a numerical tool to help inspectors accurately evaluate concrete surfaces. The method has been implemented in C++ and results that validate its performance are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The computation of both transient and steady turbulent incompressible isothermal flows is studied. The flow is very complex, having streamline curvature, large vortex structures and stagnation resulting from an impinging rectangular jet. For transient computations, the standard k-ε model is adopted. For steady flows, the k-ε, high and low Reynolds number k-l and mixing length models are tried. Zonal approaches combining the above turbulence models are also investigated. None of the models are found to give satisfactory agreement with velocity measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The usage of semiconductor nanostructures is highly promising for boosting the energy conversion efficiency in photovoltaics technology, but still some of the underlying mechanisms are not well understood at the nanoscale length. Ge quantum dots (QDs) should have a larger absorption and a more efficient quantum confinement effect than Si ones, thus they are good candidate for third-generation solar cells. In this work, Ge QDs embedded in silica matrix have been synthesized through magnetron sputtering deposition and annealing up to 800°C. The thermal evolution of the QD size (2 to 10 nm) has been followed by transmission electron microscopy and X-ray diffraction techniques, evidencing an Ostwald ripening mechanism with a concomitant amorphous-crystalline transition. The optical absorption of Ge nanoclusters has been measured by spectrophotometry analyses, evidencing an optical bandgap of 1.6 eV, unexpectedly independent of the QDs size or of the solid phase (amorphous or crystalline). A simple modeling, based on the Tauc law, shows that the photon absorption has a much larger extent in smaller Ge QDs, being related to the surface extent rather than to the volume. These data are presented and discussed also considering the outcomes for application of Ge nanostructures in photovoltaics.PACS: 81.07.Ta; 78.67.Hc; 68.65.-k.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Widespread approaches to fabricate surfaces with robust micro- and nanostructured topographies have been stimulated by opportunities to enhance interface performance by combining physical and chemical effects. In particular, arrays of asymmetric surface features, such as arrays of grooves, inclined pillars, and helical protrusions, have been shown to impart unique anisotropy in properties including wetting, adhesion, thermal and/or electrical conductivity, optical activity, and capability to direct cell growth. These properties are of wide interest for applications including energy conversion, microelectronics, chemical and biological sensing, and bioengineering. However, fabrication of asymmetric surface features often pushes the limits of traditional etching and deposition techniques, making it challenging to produce the desired surfaces in a scalable and cost-effective manner. We review and classify approaches to fabricate arrays of asymmetric 2D and 3D surface features, in polymers, metals, and ceramics. Analytical and empirical relationships among geometries, materials, and surface properties are discussed, especially in the context of the applications mentioned above. Further, opportunities for new fabrication methods that combine lithography with principles of self-assembly are identified, aiming to establish design principles for fabrication of arbitrary 3D surface textures over large areas. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superhydrophobic surfaces are shown to be effective for surface drag reduction under laminar regime by both experiments and simulations (see for example, Ou and Rothstein, Phys. Fluids 17:103606, 2005). However, such drag reduction for fully developed turbulent flow maintaining the Cassie-Baxter state remains an open problem due to high shear rates and flow unsteadiness of turbulent boundary layer. Our work aims to develop an understanding of mechanisms leading to interface breaking and loss of gas pockets due to interactions with turbulent boundary layers. We take advantage of direct numerical simulation of turbulence with slip and no-slip patterned boundary conditions mimicking the superhydrophobic surface. In addition, we capture the dynamics of gas-water interface, by deriving a proper linearized boundary condition taking into account the surface tension of the interface and kinematic matching of interface deformation and normal velocity conditions on the wall. We will show results from our simulations predicting the dynamical behavior of gas pocket interfaces over a wide range of dimensionless surface tensions.