968 resultados para INSERTIONAL MUTAGENESIS
Resumo:
The seven members of the FXYD protein family associate with the Na(+)-K(+) pump and modulate its activity. We investigated whether conserved cysteines in FXYD proteins are susceptible to glutathionylation and whether such reactivity affects Na(+)-K(+) pump function in cardiac myocytes and Xenopus oocytes. Glutathionylation was detected by immunoblotting streptavidin precipitate from biotin-GSH loaded cells or by a GSH antibody. Incubation of myocytes with recombinant FXYD proteins resulted in competitive displacement of native FXYD1. Myocyte and Xenopus oocyte pump currents were measured with whole-cell and two-electrode voltage clamp techniques, respectively. Native FXYD1 in myocytes and FXYD1 expressed in oocytes were susceptible to glutathionylation. Mutagenesis identified the specific cysteine in the cytoplasmic terminal that was reactive. Its reactivity was dependent on flanking basic amino acids. We have reported that Na(+)-K(+) pump β(1) subunit glutathionylation induced by oxidative signals causes pump inhibition in a previous study. In the present study, we found that β(1) subunit glutathionylation and pump inhibition could be reversed by exposing myocytes to exogenous wild-type FXYD3. A cysteine-free FXYD3 derivative had no effect. Similar results were obtained with wild-type and mutant FXYD proteins expressed in oocytes. Glutathionylation of the β(1) subunit was increased in myocardium from FXYD1(-/-) mice. In conclusion, there is a dependence of Na(+)-K(+) pump regulation on reactivity of two specifically identified cysteines on separate components of the multimeric Na(+)-K(+) pump complex. By facilitating deglutathionylation of the β(1) subunit, FXYD proteins reverse oxidative inhibition of the Na(+)-K(+) pump and play a dynamic role in its regulation.
Resumo:
The human T-cell leukemia virus type 1 (HTLV-1) Tax protein activates viral transcription through three 21-bp repeats located in the U3 region of the HTLV-1 long terminal repeat and called Tax-responsive elements (TxREs). Each TxRE contains nucleotide sequences corresponding to imperfect cyclic AMP response elements (CRE). In this study, we demonstrate that the bZIP transcriptional factor CREB-2 is able to bind in vitro to the TxREs and that CREB-2 binding to each of the 21-bp motifs is enhanced by Tax. We also demonstrate that Tax can weakly interact with CREB-2 bound to a cellular palindromic CRE motif such as that found in the somatostatin promoter. Mutagenesis of Tax and CREB-2 demonstrates that both N- and C-terminal domains of Tax and the C-terminal region of CREB-2 are required for direct interaction between the two proteins. In addition, the Tax mutant M47, defective for HTLV-1 activation, is unable to form in vitro a ternary complex with CREB-2 and TxRE. In agreement with recent results suggesting that Tax can recruit the coactivator CREB-binding protein (CBP) on the HTLV-1 promoter, we provide evidence that Tax, CREB-2, and CBP are capable of cooperating to stimulate viral transcription. Taken together, our data highlight the major role played by CREB-2 in Tax-mediated transactivation.
Resumo:
In the plant-beneficial bacterium Pseudomonas fluorescens CHA0, the expression of antifungal exoproducts is controlled by the GacS/GacA two-component system. Two RNA binding proteins (RsmA, RsmE) ensure effective translational repression of exoproduct mRNAs. At high cell population densities, GacA induces three small RNAs (RsmX, RsmY, RsmZ) which sequester both RsmA and RsmE, thereby relieving translational repression. Here we systematically analyse the features that allow the RNA binding proteins to interact strongly with the 5' untranslated leader mRNA of the P. fluorescens hcnA gene (encoding hydrogen cyanide synthase subunit A). We obtained evidence for three major RsmA/RsmE recognition elements in the hcnA leader, based on directed mutagenesis, RsmE footprints and toeprints, and in vivo expression data. Two recognition elements were found in two stem-loop structures whose existence in the 5' leader region was confirmed by lead(II) cleavage analysis. The third recognition element, which overlapped the hcnA Shine-Dalgarno sequence, was postulated to adopt either an open conformation, which would favour ribosome binding, or a stem-loop structure, which may form upon interaction with RsmA/RsmE and would inhibit access of ribosomes. Effective control of hcnA expression by the Gac/Rsm system appears to result from the combination of the three appropriately spaced recognition elements.
Resumo:
Immunological pressure encountered by protozoan parasites drives the selection of strategies to modulate or avoid the immune responses of their hosts. Here we show that the parasite Entamoeba histolytica has evolved a chemokine that mimics the sequence, structure, and function of the human cytokine HsEMAPII (Homo sapiens endothelial monocyte activating polypeptide II). This Entamoeba EMAPII-like polypeptide (EELP) is translated as a domain attached to two different aminoacyl-tRNA synthetases (aaRS) that are overexpressed when parasites are exposed to inflammatory signals. EELP is dispensable for the tRNA aminoacylation activity of the enzymes that harbor it, and it is cleaved from them by Entamoeba proteases to generate a standalone cytokine. Isolated EELP acts as a chemoattractant for human cells, but its cell specificity is different from that of HsEMAPII. We show that cell specificity differences between HsEMAPII and EELP can be swapped by site directed mutagenesis of only two residues in the cytokines' signal sequence. Thus, Entamoeba has evolved a functional mimic of an aaRS-associated human cytokine with modified cell specificity.
Resumo:
A proliferation-inducing ligand (APRIL), a member of the TNF ligand superfamily with an important role in humoral immunity, is also implicated in several cancers as a prosurvival factor. APRIL binds two different TNF receptors, B cell maturation antigen (BCMA) and transmembrane activator and cylclophilin ligand interactor (TACI), and also interacts independently with heparan sulfate proteoglycans. Because APRIL shares binding of the TNF receptors with B cell activation factor, separating the precise signaling pathways activated by either ligand in a given context has proven quite difficult. In this study, we have used the protein design algorithm FoldX to successfully generate a BCMA-specific variant of APRIL, APRIL-R206E, and two TACI-selective variants, D132F and D132Y. These APRIL variants show selective activity toward their receptors in several in vitro assays. Moreover, we have used these ligands to show that BCMA and TACI have a distinct role in APRIL-induced B cell stimulation. We conclude that these ligands are useful tools for studying APRIL biology in the context of individual receptor activation.
Resumo:
Nonstructural protein 4B (NS4B) is a key organizer of hepatitis C virus (HCV) replication complex formation. In concert with other nonstructural proteins, it induces a specific membrane rearrangement, designated as membranous web, which serves as a scaffold for the HCV replicase. The N-terminal part of NS4B comprises a predicted and a structurally resolved amphipathic α-helix, designated as AH1 and AH2, respectively. Here, we report a detailed structure-function analysis of NS4B AH1. Circular dichroism and nuclear magnetic resonance structural analyses revealed that AH1 folds into an amphipathic α-helix extending from NS4B amino acid 4 to 32, with positively charged residues flanking the helix. These residues are conserved among hepaciviruses. Mutagenesis and selection of pseudorevertants revealed an important role of these residues in RNA replication by affecting the biogenesis of double-membrane vesicles making up the membranous web. Moreover, alanine substitution of conserved acidic residues on the hydrophilic side of the helix reduced infectivity without significantly affecting RNA replication, indicating that AH1 is also involved in virus production. Selective membrane permeabilization and immunofluorescence microscopy analyses of a functional replicon harboring an epitope tag between NS4B AH1 and AH2 revealed a dual membrane topology of the N-terminal part of NS4B during HCV RNA replication. Luminal translocation was unaffected by the mutations introduced into AH1, but was abrogated by mutations introduced into AH2. In conclusion, our study reports the three-dimensional structure of AH1 from HCV NS4B, and highlights the importance of positively charged amino acid residues flanking this amphipathic α-helix in membranous web formation and RNA replication. In addition, we demonstrate that AH1 possesses a dual role in RNA replication and virus production, potentially governed by different topologies of the N-terminal part of NS4B.
Resumo:
We have characterized the maturation, co- and posttranslational modifications, and functional properties of the alpha(1B)-adrenergic receptor (AR) expressed in different mammalian cells transfected using conventional approaches or the Semliki Forest virus system. We found that the alpha(1B)-AR undergoes N-linked glycosylation as demonstrated by its sensitivity to endoglycosidases and by the effect of tunicamycin on receptor maturation. Pulse-chase labeling experiments in BHK-21 cells demonstrate that the alpha(1B)-AR is synthesized as a 70 kDa core glycosylated precursor that is converted to the 90 kDa mature form of the receptor with a half-time of approximately 2 h. N-Linked glycosylation of the alpha(1B)-AR occurs at four asparagines on the N-terminus of the receptor. Mutations of the N-linked glycosylation sites did not have a significant effect on receptor function or expression. Surprisingly, receptor mutants lacking N-linked glycosylation migrated as heterogeneous bands in SDS-PAGE. Our findings demonstrate that N-linked glycosylation and phosphorylation, but not palmitoylation or O-linked glycosylation, contribute to the structural heterogeneity of the alpha(1B)-AR as it is observed in SDS-PAGE. The modifications found are similar in the different mammalian expression systems explored. Our findings indicate that the Semliki Forest virus system can provide large amounts of functional and fully glycosylated alpha(1B)-AR protein suitable for biochemical and structural studies. The results of this study contribute to elucidate the basic steps involved in the processing of G protein-coupled receptors as well as to optimize strategies for their overexpression.
Resumo:
A crucial step in the life cycle of arenaviruses is the biosynthesis of the mature fusion-active viral envelope glycoprotein (GP) that is essential for virus-host cell attachment and entry. The maturation of the arenavirus GP precursor (GPC) critically depends on proteolytic processing by the cellular proprotein convertase (PC) subtilisin kexin isozyme-1 (SKI-1)/site-1 protease (S1P). Here we undertook a molecular characterization of the SKI-1/S1P processing of the GPCs of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) and the pathogenic Lassa virus (LASV). Previous studies showed that the GPC of LASV undergoes processing in the endoplasmic reticulum (ER)/cis-Golgi compartment, whereas the LCMV GPC is cleaved in a late Golgi compartment. Herein we confirm these findings and provide evidence that the SKI-1/S1P recognition site RRLL, present in the SKI-1/S1P prodomain and LASV GPC, but not in the LCMV GPC, is crucial for the processing of the LASV GPC in the ER/cis-Golgi compartment. Our structure-function analysis revealed that the cleavage of arenavirus GPCs, but not cellular substrates, critically depends on the autoprocessing of SKI-1/S1P, suggesting differences in the processing of cellular and viral substrates. Deletion mutagenesis showed that the transmembrane and intracellular domains of SKI-1/S1P are dispensable for arenavirus GPC processing. The expression of a soluble form of the protease in SKI-I/S1P-deficient cells resulted in the efficient processing of arenavirus GPCs and rescued productive virus infection. However, exogenous soluble SKI-1/S1P was unable to process LCMV and LASV GPCs displayed at the surface of SKI-I/S1P-deficient cells, indicating that GPC processing occurs in an intracellular compartment. In sum, our study reveals important differences in the SKI-1/S1P processing of viral and cellular substrates.
Resumo:
Wood dust is recognised as a human carcinogen, based on the strong association of wood dust exposure and the elevated risk of malignant tumours of the nasal cavity and paranasal sinuses [sino-nasal cancer (SNC)]. The study aimed to assess genetic damage in workers exposed to wood dust using biomarkers in both buccal and nasal cells that reflect genome instability events, cellular proliferation and cell death frequencies. Nasal and buccal epithelial cells were collected from 31 parquet layers, installers, carpenters and furniture workers (exposed group) and 19 non-exposed workers located in Switzerland. Micronucleus (MN) frequencies were scored in nasal and buccal cells collected among woodworkers. Other nuclear anomalies in buccal cells were measured through the use of the buccal micronucleus cytome assay. MN frequencies in nasal and buccal cells were significantly higher in the exposed group compared to the non-exposed group; odds ratio for nasal cells 3.1 [95% confidence interval (CI) 1.8-5.1] and buccal cells 1.8 (95% CI 1.3-2.4). The exposed group had higher frequencies of cells with nuclear buds, karyorrhectic, pyknotic, karyolytic cells and a decrease in the frequency of basal, binucleated and condensed cells compared to the non-exposed group. Our study confirms that woodworkers have an elevated risk for chromosomal instability in cells of the aerodigestive tract. The MN assay in nasal cells may become a relevant biomonitoring tool in the future for early detection of SNC risk. Future studies should seek to standardise the protocol for MN frequency in nasal cells similar to that for MN in buccal cells.
Resumo:
Azole resistance in Candida albicans can be mediated by the upregulation of the ATP binding cassette transporter genes CDR1 and CDR2. Both genes are regulated by a cis-acting element called the drug-responsive element (DRE), with the consensus sequence 5'-CGGAWATCGGATATTTTTTT-3', and the transcription factor Tac1p. In order to analyze in detail the DRE sequence necessary for the regulation of CDR1 and CDR2 and properties of TAC1 alleles, a one-hybrid system was designed. This system is based on a P((CDR2))-HIS3 reporter system in which complementation of histidine auxotrophy can be monitored by activation of the reporter system by CDR2-inducing drugs such as estradiol. Our results show that most of the modifications within the DRE, but especially at the level of CGG triplets, strongly reduce CDR2 expression. The CDR2 DRE was replaced by putative DREs deduced from promoters of coregulated genes (CDR1, RTA3, and IFU5). Surprisingly, even if Tac1p was able to bind these putative DREs, as shown by chromatin immunoprecipitation, those from RTA3 and IFU5 did not functionally replace the CDR2 DRE. The one-hybrid system was also used for the identification of gain-of-function (GOF) mutations either in TAC1 alleles from clinical C. albicans isolates or inserted in TAC1 wild-type alleles by random mutagenesis. In all, 17 different GOF mutations were identified at 13 distinct positions. Five of them (G980E, N972D, A736V, T225A, and N977D) have already been described in clinical isolates, and four others (G980W, A736T, N972S, and N972I) occurred at already-described positions, thus suggesting that GOF mutations can occur in a limited number of positions in Tac1p. In conclusion, the one-hybrid system developed here is rapid and powerful and can be used for characterization of cis- and trans-acting elements in C. albicans.
Resumo:
TWEAK (TNF homologue with weak apoptosis-inducing activity) and Fn14 (fibroblast growth factor-inducible protein 14) are members of the tumor necrosis factor (TNF) ligand and receptor super-families. Having observed that Xenopus Fn14 cross-reacts with human TWEAK, despite its relatively low sequence homology to human Fn14, we examined the conservation in tertiary fold and binding interfaces between the two species. Our results, combining NMR solution structure determination, binding assays, extensive site-directed mutagenesis and molecular modeling, reveal that, in addition to the known and previously characterized β-hairpin motif, the helix-loop-helix motif makes an essential contribution to the receptor/ligand binding interface. We further discuss the insight provided by the structural analyses regarding how the cysteine-rich domains of the TNF receptor super-family may have evolved over time. DATABASE: Structural data are available in the Protein Data Bank/BioMagResBank databases under the accession codes 2KMZ, 2KN0 and 2KN1 and 17237, 17247 and 17252. STRUCTURED DIGITAL ABSTRACT: TWEAK binds to hFn14 by surface plasmon resonance (View interaction) xeFn14 binds to TWEAK by enzyme linked immunosorbent assay (View interaction) TWEAK binds to xeFn14 by surface plasmon resonance (View interaction) hFn14 binds to TWEAK by enzyme linked immunosorbent assay (View interaction).
Resumo:
CREB is a cAMP-responsive nuclear DNA-binding protein that binds to cAMP response elements and stimulates gene transcription upon activation of the cAMP signalling pathway. The protein consists of an amino-terminal transcriptional transactivation domain and a carboxyl-terminal DNA-binding domain (bZIP domain) comprised of a basic region and a leucine zipper involved in DNA recognition and dimerization, respectively. Recently, we discovered a testis-specific transcript of CREB that contains an alternatively spliced exon encoding multiple stop codons. CREB encoded by this transcript is a truncated protein lacking the bZIP domain. We postulated that the antigen detected by CREB antiserum in the cytoplasm of germinal cells is the truncated CREB that must also lack its nuclear translocation signal (NTS). To test this hypothesis we prepared multiple expression plasmids encoding carboxyl-terminal deletions of CREB and transiently expressed them in COS-1 cells. By Western immunoblot analysis as well as immunocytochemistry of transfected cells, we show that CREB proteins truncated to amino acid 286 or shorter are sequestered in the cytoplasm, whereas a CREB of 295 amino acids is translocated into the nucleus. Chimeric CREBs containing a heterologous NTS fused to the first 248 or 261 amino acids of CREB are able to drive the translocation of the protein into the nucleus. Thus, the nine amino acids in the basic region involved in DNA recognition between positions 287 and 295 (RRKKKEYVK) of CREB contain the NTS. Further, mutation of the lysine at position 290 in CREB to an asparagine diminishes nuclear translocation of the protein.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
To elucidate the structural basis of T cell recognition of hapten-modified antigenic peptides, we studied the interaction of the T1 T cell antigen receptor (TCR) with its ligand, the H-2Kd-bound Plasmodium berghei circumsporozoite peptide 252-260 (SYIPSAEKI) containing photoreactive 4-azidobenzoic acid (ABA) on P. berghei circumsporozoite Lys259. The photoaffinity-labeled TCR residue(s) were mapped as Tyr48 and/or Tyr50 of complementary determining region 2beta (CDR2beta). Other TCR-ligand contacts were identified by mutational analysis. Molecular modeling, based on crystallographic coordinates of closely related TCR and major histocompatibility complex I molecules, indicated that ABA binds strongly and specifically in a cavity between CDR3alpha and CDR2beta. We conclude that TCR expressing selective Vbeta and CDR3alpha sequences form a binding domain between CDR3alpha and CDR2beta that can accommodate nonpeptidic moieties conjugated at the C-terminal portion of peptides binding to major histocompatibility complex (MHC) encoded proteins.
Resumo:
The epithelial sodium channel ENaC is physiologically important in the kidney for the regulation of the extracellular fluid volume, and in the lungs for the maintenance of the appropriate airway surface liquid volume that lines the pulmonary epithelium. Besides the regulation of ENaC by hormones, intracellular factors such as Na(+) ions, pH, or Ca(2+) are responsible for fast adaptive responses of ENaC activity to changes in the intracellular milieu. In this study, we show that ENaC is rapidly and reversibly inhibited by internal sulfhydryl-reactive molecules such as methanethiosulfonate derivatives of different sizes, the metal cations Cd(2+) and Zn(2+), or copper(II) phenanthroline, a mild oxidizing agent that promotes the formation of disulfide bonds. At the single channel level, these agents applied intracellularly induce the appearance of long channel closures, suggesting an effect on ENaC gating. The intracellular reducing agent dithiothreitol fully reverses the rundown of ENaC activity in inside-out patches. Our observations suggest that changes in intracellular redox potential modulate ENaC activity and may regulate ENaC-mediated Na(+) transport in epithelia. Finally, substitution experiments reveal that multiple cysteine residues in the amino and carboxyl termini of ENaC subunits are responsible for this thiol-mediated inhibition of ENaC.
Resumo:
Using the yeast two-hybrid system, we identified the mu 2 subunit of the clathrin adaptor complex 2 as a protein interacting with the C-tail of the alpha 1b-adrenergic receptor (AR). Direct association between the alpha 1b-AR and mu 2 was demonstrated using a solid phase overlay assay. The alpha 1b-AR/mu 2 interaction occurred inside the cells, as shown by the finding that the transfected alpha 1b-AR and the endogenous mu 2 could be coimmunoprecipitated from HEK-293 cell extracts. Mutational analysis of the alpha 1b-AR revealed that the binding site for mu 2 does not involve canonical YXX Phi or dileucine motifs but a stretch of eight arginines on the receptor C-tail. The binding domain of mu 2 for the receptor C-tail involves both its N terminus and the subdomain B of its C-terminal portion. The alpha 1b-AR specifically interacted with mu 2, but not with the mu 1, mu 3, or mu 4 subunits belonging to other AP complexes. The deletion of the mu 2 binding site in the C-tail markedly decreased agonist-induced receptor internalization as demonstrated by confocal microscopy as well as by the results of a surface receptor biotinylation assay. The direct association of the adaptor complex 2 with a G protein-coupled receptor has not been reported so far and might represent a common mechanism underlying clathrin-mediated receptor endocytosis.