962 resultados para IMPLANTED LINBO3
Resumo:
We investigated the effects of losartan, an AT1-receptor blocker, and ramipril, a converting enzyme inhibitor, on the pressor response induced by angiotensin II (ANG II) and carbachol (a cholinergic receptor agonist). Male Holtzman rats (250-300 g) with a stainless steel cannula implanted into the lateral ventricle (LV) were used. The injection of losartan (50 nmol/1 µl) into the LV blocked the pressor response induced by ANG II (12 ng/1 µl) and carbachol (2 nmol/1 µl). After injection of ANG II and carbachol into the LV, mean arterial pressure (MAP) increased to 31 ± 1 and 28 ± 2 mmHg, respectively. Previous injection of losartan abolished the increase in MAP induced by ANG II and carbachol into the LV (2 ± 1 and 5 ± 2 mmHg, respectively). The injection of ramipril (12 ng/1 µl) prior to carbachol blocked the pressor effect of carbachol to 7 ± 3 mmHg. These results suggest an interaction between central cholinergic pathways and the angiotensinergic system in the regulation of arterial blood pressure
Resumo:
The objective of the present study was to validate the transit-time technique for long-term measurements of iliac and renal blood flow in rats. Flow measured with ultrasonic probes was confirmed ex vivo using excised arteries perfused at varying flow rates. An implanted 1-mm probe reproduced with accuracy different patterns of flow relative to pressure in freely moving rats and accurately quantitated the resting iliac flow value (on average 10.43 ± 0.99 ml/min or 2.78 ± 0.3 ml min-1 100 g body weight-1). The measurements were stable over an experimental period of one week but were affected by probe size (resting flows were underestimated by 57% with a 2-mm probe when compared with a 1-mm probe) and by anesthesia (in the same rats, iliac flow was reduced by 50-60% when compared to the conscious state). Instantaneous changes of iliac and renal flow during exercise and recovery were accurately measured by the transit-time technique. Iliac flow increased instantaneously at the beginning of mild exercise (from 12.03 ± 1.06 to 25.55 ± 3.89 ml/min at 15 s) and showed a smaller increase when exercise intensity increased further, reaching a plateau of 38.43 ± 1.92 ml/min at the 4th min of moderate exercise intensity. In contrast, exercise-induced reduction of renal flow was smaller and slower, with 18% and 25% decreases at mild and moderate exercise intensities. Our data indicate that transit-time flowmetry is a reliable method for long-term and continuous measurements of regional blood flow at rest and can be used to quantitate the dynamic flow changes that characterize exercise and recovery
Resumo:
Male Wistar rats were trained in one-trial step-down inhibitory avoidance using a 0.4-mA footshock. At various times after training (0, 1.5, 3, 6 and 9 h for the animals implanted into the CA1 region of the hippocampus; 0 and 3 h for those implanted into the amygdala), these animals received microinfusions of SKF38393 (7.5 µg/side), SCH23390 (0.5 µg/side), norepinephrine (0.3 µg/side), timolol (0.3 µg/side), 8-OH-DPAT (2.5 µg/side), NAN-190 (2.5 µg/side), forskolin (0.5 µg/side), KT5720 (0.5 µg/side) or 8-Br-cAMP (1.25 µg/side). Rats were tested for retention 24 h after training. When given into the hippocampus 0 h post-training, norepinephrine enhanced memory whereas KT5720 was amnestic. When given 1.5 h after training, all treatments were ineffective. When given 3 or 6 h post-training, 8-Br-cAMP, forskolin, SKF38393, norepinephrine and NAN-190 caused memory facilitation, while KT5720, SCH23390, timolol and 8-OH-DPAT caused retrograde amnesia. Again, at 9 h after training, all treatments were ineffective. When given into the amygdala, norepinephrine caused retrograde facilitation at 0 h after training. The other drugs infused into the amygdala did not cause any significant effect. These data suggest that in the hippocampus, but not in the amygdala, a cAMP/protein kinase A pathway is involved in memory consolidation at 3 and 6 h after training, which is regulated by D1, ß, and 5HT1A receptors. This correlates with data on increased post-training cAMP levels and a dual peak of protein kinase A activity and CREB-P levels (at 0 and 3-6 h) in rat hippocampus after training in this task. These results suggest that the hippocampus, but not the amygdala, is involved in long-term storage of step-down inhibitory avoidance in the rat.
Resumo:
The hemodynamic responses to acute (45 min) partial aortic constriction were studied in conscious intact (N = 7) or sinoaortic denervated (SAD) adult male Wistar rats (280-350 g, N = 7) implanted with carotid and femoral arterial catheters, a pneumatic cuff around the abdominal aorta and a pulsed Doppler flow probe to measure changes in aortic resistance. In addition, the hypertensive response and the reflex bradycardia elicited by total (N = 8) vs partial (N = 7) aortic constriction (monitored by maintenance of the pressure distal to the cuff at 50 mmHg) were compared in two other groups of intact rats. Intact rats presented a smaller hypertensive response (26 to 40% above basal level) to partial aortic constriction than SAD rats (38 to 58%). The calculated change in aortic resistance imposed by constriction of the aorta increased progressively only in intact rats, but was significantly smaller (193 to 306%) than that observed (501 to 591%) in SAD rats. Intact rats showed a significant bradycardia (23 to 26% change in basal heart rate) throughout coarctation, whereas the SAD rats did not (1 to 3%). Partial or total occlusion of the aorta induced similar hypertensive responses (37-38% vs 24-30% for total constriction) as well as reflex bradycardia (-15 to -17% vs -22 to -33%) despite a greater gradient in pressure (97-98 vs 129-140 mmHg) caused by total constriction. The present data indicate that the integrity of the baroreflex in intact rats can cause the hypertensive response to level off at a lower value than in SAD rats despite a progressive increase in aortic resistance. In addition, they also indicate that the degree of partial aortic constriction by maintenance of the pressure distal to the cuff at 50 mmHg already elicits a maximal stimulation of the arterial baroreflex
Resumo:
Stress is a well-known entity and may be defined as a threat to the homeostasis of a being. In the present study, we evaluated the effects of acupuncture on the physiological responses induced by restraint stress. Acupuncture is an ancient therapeutic technique which is used in the treatment and prevention of diseases. Its proposed mechanisms of action are based on the principle of homeostasis. Adult male Wistar EPM-1 rats were divided into four groups: group I (N = 12), unrestrained rats with cannulas previously implanted into their femoral arteries for blood pressure and heart rate measurements; group II (N = 12), rats that were also cannulated and were submitted to 60-min immobilization; group III (N = 12), same as group II but with acupuncture needles implanted at points SP6, S36, REN17, P6 and DU20 during the immobilization period; group IV (N = 14), same as group III but with needles implanted at points not related to acupuncture (non-acupoints). During the 60-min immobilization period animals were assessed for stress-related behaviors, heart rate, blood pressure and plasma corticosterone, noradrenaline and adrenaline levels. Group III animals showed a significant reduction (60% on average, P<0.02) in restraint-induced behaviors when compared to groups II and IV. Data from cardiovascular and hormonal assessments indicated no differences between group III and group II and IV animals, but tended to be lower (50% reduction on average) in group I animals. We hypothesize that acupuncture at points SP6, S36, REN17, P6 and DU20 has an anxiolytic effect on restraint-induced stress that is not due to a sedative action
Resumo:
The inferior colliculus is a primary relay for the processing of auditory information in the brainstem. The inferior colliculus is also part of the so-called brain aversion system as animals learn to switch off the electrical stimulation of this structure. The purpose of the present study was to determine whether associative learning occurs between aversion induced by electrical stimulation of the inferior colliculus and visual and auditory warning stimuli. Rats implanted with electrodes into the central nucleus of the inferior colliculus were placed inside an open-field and thresholds for the escape response to electrical stimulation of the inferior colliculus were determined. The rats were then placed inside a shuttle-box and submitted to a two-way avoidance paradigm. Electrical stimulation of the inferior colliculus at the escape threshold (98.12 ± 6.15 (A, peak-to-peak) was used as negative reinforcement and light or tone as the warning stimulus. Each session consisted of 50 trials and was divided into two segments of 25 trials in order to determine the learning rate of the animals during the sessions. The rats learned to avoid the inferior colliculus stimulation when light was used as the warning stimulus (13.25 ± 0.60 s and 8.63 ± 0.93 s for latencies and 12.5 ± 2.04 and 19.62 ± 1.65 for frequencies in the first and second halves of the sessions, respectively, P<0.01 in both cases). No significant changes in latencies (14.75 ± 1.63 and 12.75 ± 1.44 s) or frequencies of responses (8.75 ± 1.20 and 11.25 ± 1.13) were seen when tone was used as the warning stimulus (P>0.05 in both cases). Taken together, the present results suggest that rats learn to avoid the inferior colliculus stimulation when light is used as the warning stimulus. However, this learning process does not occur when the neutral stimulus used is an acoustic one. Electrical stimulation of the inferior colliculus may disturb the signal transmission of the stimulus to be conditioned from the inferior colliculus to higher brain structures such as amygdala
Resumo:
The purpose of this research was to evaluate the role of hippocampal N-methyl-D-aspartate (NMDA) receptors in acquisition and consolidation of memory during shuttle avoidance conditioning in rats. Adult male Wistar rats were surgically implanted with cannulae aimed at the CA1 area of the dorsal hippocampus. After recovery from surgery, animals were trained and tested in a shuttle avoidance apparatus (30 trials, 0.5-mA footshock, 24-h training-test interval). Immediately before or immediately after training, animals received a bilateral intrahippocampal 0.5-µl infusion containing 5.0 µg of the NMDA competitive receptor antagonist aminophosphonopentanoic acid (AP5) or vehicle (phosphate-buffered saline, pH 7.4). Infusion duration was 2 min per side. Pre-training infusion of AP5 impaired retention test performance (mean ± SEM number of conditioned responses (CRs) during retention test session was 16.47 ± 1.78 in the vehicle group and 9.93 ± 1.59 in the AP5 group; P<0.05). Post-training infusion of AP5 did not affect retention (mean ± SEM number of conditioned responses during retention test session was 18.46 ± 1.94 in the vehicle group and 20.42 ± 2.38 in the AP5 group; P>0.10). This impairment could not be attributed to an effect on acquisition, motor activity or footshock sensitivity since AP5 affected neither training session performance measured by the number of CRs nor the number of intertrial crossings during the training session. These data suggest that NMDA receptors in the hippocampus are critical for retention of shuttle avoidance conditioning, in agreement with previous evidence showing a role of NMDA receptors in fear memory.
Resumo:
Intra-amygdala infusion of the non-N-methyl-D-aspartate (NMDA) receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) prior to testing impairs inhibitory avoidance retention test performance. Increased training attenuates the impairing effects of amygdala lesions and intra-amygdala infusions of CNQX. The objective of the present study was to determine the effects of additional training on the impairing effects of intra-amygdala CNQX on expression of the inhibitory avoidance task. Adult female Wistar rats bilaterally implanted with cannulae into the border between the central and the basolateral nuclei of the amygdala were submitted to a single session or to three training sessions (0.2 mA, 24-h interval between sessions) in a step-down inhibitory avoidance task. A retention test session was held 48 h after the last training. Ten minutes prior to the retention test session, the animals received a 0.5-µl infusion of CNQX (0.5 µg) or its vehicle (25% dimethylsulfoxide in saline). The CNQX infusion impaired, but did not block, retention test performance in animals submitted to a single training session. Additional training prevented the impairing effect of CNQX. The results suggest that amygdaloid non-NMDA receptors may not be critical for memory expression in animals given increased training.
Resumo:
The effects of the benzodiazepine1 (BZ1) receptor agonist SX-3228 were studied in rats (N = 12) implanted for chronic sleep procedures. Administration of 0.5, 1.0 and 2.5 mg/kg SX-3228, sc, to rats 1 h after the beginning of the light phase of the light-dark cycle induced a significant reduction of rapid-eye-movement sleep (REMS) during the third recording hour. Moreover, slow wave sleep (SWS) was increased during the fourth recording hour after the two largest doses of the compound. Administration of 0.5, 1.0 and 2.5 mg/kg SX-3228 one hour after the beginning of the dark period of the light-dark cycle caused a significant and maintained (6-h recording period) reduction of waking (W), whereas SWS and light sleep (LS) were increased. REMS values tended to increase during the entire recording period; however, the increase was statistically significant only for the 1.0 mg/kg dose during the first recording hour. In addition, a significant and dose-related increase of power density in the delta and the theta regions was found during nonREM sleep (LS and SWS) in the dark period. Our results indicate that SX-3228 is a potent hypnotic when given to the rat during the dark period of the light-dark cycle. Moreover, the sleep induced by SX-3228 during the dark phase closely resembles the physiological sleep of the rat.
Resumo:
The drinking behavior responses to centrally administered NG-nitro-L-arginine methyl ester (L-NAME; 10, 20 or 40 µg/µl), an inhibitor of nitric oxide synthase, were studied in satiated rats, with cannulae stereotaxically implanted into the lateral ventricle (LV) and subfornical organ (SFO). Water intake increased in all animals after angiotensin II (ANG II) injection into the LV, with values of 14.2 ± 1.4 ml/h. After injection of L-NAME at doses of 10, 20 or 40 µg/µl into the SFO before injection of ANG II (12 ng/µl) into the LV, water intake decreased progressively and reached basal levels after treatment with 0.15 M NaCl and with the highest dose of L-NAME (i.e., 40 µg). The water intake obtained after 40 µg/µl L-NAME was 0.8 ± 0.01 ml/h. Also, the injection of L-NAME, 10, 20 or 40 µg/µl, into the LV progressively reduced the water intake induced by hypertonic saline, with values of 5.3 ± 0.8, 3.2 ± 0.8 and 0.7 ± 0.01 ml/h, respectively. These results indicate that nitric oxide is involved in the regulation of drinking behavior induced by centrally administered ANG II and cellular dehydration and that the nitric oxide of the SFO plays an important role in this regulation.
Resumo:
We evaluated the mechanical behavior of the repaired surfaces of defective articular cartilage in the intercondylar region of the rat femur after a hydrogel graft implant. The results were compared to those for the adjacent normal articular cartilage and for control surfaces where the defects remained empty. Hydrogel synthesized by blending poly(2-hydroxyethyl methacrylate) and poly(methyl methacrylate-co-acrylic acid) was implanted in male Wistar rats. The animals were divided into five groups with postoperative follow-up periods of 3, 5, 8, 12 and 16 weeks. Indentation tests were performed on the neoformed surfaces in the knee joint (with or without a hydrogel implant) and on adjacent articular cartilage in order to assess the mechanical properties of the newly formed surface. Kruskal-Wallis analysis indicated that the mechanical behavior of the neoformed surfaces was significantly different from that of normal cartilage. Histological analysis of the repaired defects showed that the hydrogel implant filled the defect with no signs of inflammation as it was well anchored to the surrounding tissues, resulting in a newly formed articular surface. In the case of empty control defects, osseous tissue grew inside the defects and fibrous tissue formed on the articular surface of the defects. The repaired surface of the hydrogel implant was more compliant than normal articular cartilage throughout the 16 weeks following the operation, whereas the fibrous tissue that formed postoperatively over the empty defect was stiffer than normal articular cartilage after 5 weeks. This stiffness started to decrease 16 weeks after the operation, probably due to tissue degeneration. Thus, from the biomechanical and histological point of view, the hydrogel implant improved the articular surface repair.
Resumo:
We evaluated the effects of infusions of the NMDA receptor antagonist D,L-2-amino-5-phosphonopentanoic acid (AP5) into the basolateral nucleus of the amygdala (BLA) on the formation and expression of memory for inhibitory avoidance. Adult male Wistar rats (215-300 g) were implanted under thionembutal anesthesia (30 mg/kg, ip) with 9.0-mm guide cannulae aimed 1.0 mm above the BLA. Bilateral infusions of AP5 (5.0 µg) were given 10 min prior to training, immediately after training, or 10 min prior to testing in a step-down inhibitory avoidance task (0.3 mA footshock, 24-h interval between training and the retention test session). Both pre- and post-training infusions of AP5 blocked retention test performance. When given prior to the test, AP5 did not affect retention. AP5 did not affect training performance, and a control experiment showed that the impairing effects were not due to alterations in footshock sensitivity. The results suggest that NMDA receptor activation in the BLA is involved in the formation, but not the expression, of memory for inhibitory avoidance in rats. However, the results do not necessarily imply that the role of NMDA receptors in the BLA is to mediate long-term storage of fear-motivated memory within the amygdala.
Resumo:
The influence of a chronically implanted spinal cannula on the nociceptive response induced by mechanical, chemical or thermal stimuli was evaluated. The hyperalgesia in response to mechanical stimulation induced by carrageenin or prostaglandin E2 (PGE2) was significantly increased in cannulated (Cn) rats, compared with naive (Nv) or sham-operated (Sh) rats. Only Cn animals presented an enhanced nociceptive response in the first phase of the formalin test when low doses were used (0.3 and 1%). The withdrawal latency to thermal stimulation of a paw inflamed by carrageenin was significantly reduced in Cn rats but not in Nv or Sh rats. In contrast to Nv and Sh rats, injection in Cn animals of a standard non-steroid anti-inflammatory drug, indomethacin, either intraperitoneally or into the spinal cord via an implanted cannula or by direct puncture of the intrathecal space significantly blocked the intensity of the hyperalgesia induced by PGE2. Cannulated animals treated with indomethacin also showed a significant inhibition of second phase formalin-induced paw flinches. Histopathological analysis of the spinal cord showed an increased frequency of mononuclear inflammatory cells in the Cn groups. Thus, the presence of a chronically implanted cannula seems to cause nociceptive spinal sensitization to mechanical, chemical and thermal stimulation, which can be blocked by indomethacin, thus suggesting that it may result from the spinal release of prostaglandins due to an ongoing mild inflammation.
Resumo:
The effects of a fraction (T1) of Tityus serrulatus scorpion venom prepared by gel filtration on gastric emptying and small intestinal transit were investigated in male Wistar rats. Fasted animals were anesthetized with urethane, submitted to tracheal intubation and right jugular vein cannulation. Scorpion toxin (250 µg/kg) or saline was injected iv and 1 h later a bolus of saline (1.0 ml/100 g) labeled with 99m technetium-phytate (10 MBq) was administered by gavage. After 15 min, animals were sacrificed and the radioactivity remaining in the stomach was determined. Intestinal transit was evaluated by instillation of a technetium-labeled saline bolus (1.0 ml) through a cannula previously implanted in the duodenum. After 60 min, the progression of the marker throughout 7 consecutive gut segments was estimated by the geometric center method. Gastric retention of the liquid test meal in rats injected with scorpion toxin (median: 88%; range: 52-95%) was significantly higher (P<0.02) than in controls (54%; 21-76%), an effect which was not modified by gastric secretion blockade with ranitidine. The progression of the isotope marker throughout the small intestine was significantly slower (P<0.05) in rats treated with toxin (1.2; 1.0-2.5) than in control animals (2.3; 1.0-3.2). Inhibition of both gastric emptying and intestinal transit in rats injected with scorpion toxin suggests an increased resistance to aboral flow, which might be caused by abnormal neurotransmitter release or by the local effects of venom on smooth muscle cells.
Resumo:
Rats implanted bilaterally with cannulae in the CA1 region of the dorsal hippocampus or the entorhinal cortex were submitted to either a one-trial inhibitory avoidance task, or to 5 min of habituation to an open field. Immediately after training, they received intrahippocampal or intraentorhinal 0.5-µl infusions of saline, of a vehicle (2% dimethylsulfoxide in saline), of the glutamatergic N-methyl-D-aspartate (NMDA) receptor antagonist 2-amino-5-phosphono pentanoic acid (AP5), of the protein kinase A inhibitor Rp-cAMPs (0.5 µg/side), of the calcium-calmodulin protein kinase II inhibitor KN-62, of the dopaminergic D1 antagonist SCH23390, or of the mitogen-activated protein kinase kinase inhibitor PD098059. Animals were tested in each task 24 h after training. Intrahippocampal KN-62 was amnestic for habituation; none of the other treatments had any effect on the retention of this task. In contrast, all of them strongly affected memory of the avoidance task. Intrahippocampal Rp-cAMPs, KN-62 and AP5, and intraentorhinal Rp-cAMPs, KN-62, PD098059 and SCH23390 caused retrograde amnesia. In view of the known actions of the treatments used, the present findings point to important biochemical differences in memory consolidation processes of the two tasks.