898 resultados para Hypothalamus-pituitary-adrenal axis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that the renin-angiotensin system contributes to left ventricular hypertrophy and fibrosis, a major determinant of myocardial stiffness. TGF-β1 and renin-angiotensin system signaling alters the fibroblast phenotype by promoting its differentiation into morphologically distinct pathological myofibroblasts, which potentiates collagen synthesis and fibrosis and causes enhanced extracellular matrix deposition. However, the atrial natriuretic peptide, which is induced during left ventricular hypertrophy, plays an anti-fibrogenic and anti-hypertrophic role by blocking, among others, the TGF-β-induced nuclear localization of Smads. It is not clear how the hypertrophic and fibrotic responses are transcriptionally regulated. CLP-1, the mouse homolog of human hexamethylene bis-acetamide inducible-1 (HEXIM-1), regulates the pTEFb activity via direct association with pTEFb causing inhibition of the Cdk9-mediated serine 2 phosphorylation in the carboxyl-terminal domain of RNA polymerase II. It was recently reported that the serine kinase activity of Cdk9 not only targets RNA polymerase II but also the conserved serine residues of the polylinker region in Smad3, suggesting that CLP-1-mediated changes in pTEFb activity may trigger Cdk9-dependent Smad3 signaling that can modulate collagen expression and fibrosis. In this study, we evaluated the role of CLP-1 in vivo in induction of left ventricular hypertrophy in angiotensinogen-overexpressing transgenic mice harboring CLP-1 heterozygosity. We observed that introduction of CLP-1 haplodeficiency in the transgenic α-myosin heavy chain-angiotensinogen mice causes prominent changes in hypertrophic and fibrotic responses accompanied by augmentation of Smad3/Stat3 signaling. Together, our findings underscore the critical role of CLP-1 in remodeling of the genetic response during hypertrophy and fibrosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: During stress, vasopressin is a potent synergistic factor of CRH as a hypothalamic stimulator of the HPA axis. The measurements of CRH and vasopressin levels are cumbersome because of their instability and short half-life. Copeptin is a more stable peptide stoichiometrically released from the same precursor molecule. The aim of our study was to compare copeptin and cortisol levels in different stress situations. METHODS: Three groups of patients with increasing stress levels were investigated: a) healthy controls without apparent stress (n=20), b) hospitalized medical patients with moderate stress (n=25) and c) surgical patients 30 minutes after extubation, with maximal stress (n=29). In all patients we assessed cortisol and copeptin levels. Copeptin levels were measured with a new sandwich immunoassay. RESULTS: Cortisol levels in controls were (median, IQ range, 486 [397-588] nmol/L), not significantly different as compared to medical patients (438 [371-612] nmol/L, p=0.69). Cortisol levels in surgical patients after extubation were higher (744 [645-1062] nmol/L p<0.01 vs controls and medical patients). Copeptin levels in controls were 4.3 [3.2-5.5] pmol/L, which was lower as compared to medical patients (17.5 [6.4-24.1], p<0.001) and surgical patients after extubation (67.5 [37.8-110.0] pmol/L, p<0.001). The correlation between copeptin levels and cortisol was r=0.46, p<0.001. CONCLUSION: Copeptin is a novel marker of the individual stress level. It more subtly mirrors moderate stress as compared to cortisol values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuropeptide Y (NPY) gene is expressed in human pituitary gland where its function is partially elucidated. NPY could act as a neuroendocrine modulator within this gland. This study was undertaken to assess whether NPY expression is correlated to various pathological situations. Using a highly specific anti-NPY monoclonal antibody, immunohistochemistry analysis was performed in surgically removed pituitary glands. The study included biopsies from 112 human pituitary adenomas, 12 hyperplastic glands and normal anterior pituitary tissues in 34 cases. NPY is immunodetected in 33% of all adenomas, 25% hyperplastic glands and 12% of non-tumoral pituitary gland. NPY expression was significantly higher in adenomas compared to the normal gland. However, no correlation was observed between NPY content and the type of hormonal secretion, sex, age and the status of tumour proliferating potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hypothalamic damage induced by neonatal treatment with monosodium l-glutamate (MSG) induces several metabolic abnormalities, resulting in a rat hyperleptinemic-hyperadipose phenotype. This study was conducted to explore the impact of the neonatal MSG treatment, in the adult (120 days old) female rat on: (a) the in vivo and in vitro mineralocorticoid responses to ACTH and angiotensin II (AII); (b) the effect of leptin on ACTH- and AII-stimulated mineralocorticoid secretions by isolated corticoadrenal cells; and (c) abdominal adiposity characteristics. Our data indicate that, compared with age-matched controls, MSG rats displayed: (1) enhanced and reduced mineralocorticoid responses to ACTH and AII treatments, respectively, effects observed in both in vivo and in vitro conditions; (2) adrenal refractoriness to the inhibitory effect of exogenous leptin on ACTH-stimulated aldosterone output by isolated adrenocortical cells; and (3) distorted omental adiposity morphology and function. This study supports that the adult hyperleptinemic MSG female rat is characterized by enhanced ACTH-driven mineralocorticoid function, impaired adrenal leptin sensitivity, and disrupted abdominal adiposity function. MSG rats could counteract undesirable effects of glucocorticoid excess, by developing a reduced AII-driven mineralocorticoid function. Thus, chronic hyperleptinemia could play a protective role against ACTH-mediated allostatic loads in the adrenal leptin resistant, MSG female rat phenotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The objectives of this study were to determine the risk factors for relative adrenal insufficiency in cardiopulmonary bypass patients and the impact on postoperative vasopressor requirements. METHODS: Prospective cohort study on cardiopulmonary bypass patients who received etomidate or not during anesthetic induction. Relative adrenal insufficiency was defined as a rise in serum cortisol

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context: Kallmann syndrome (KS), combined pituitary hormone deficiency (CPHD), and septo-optic dysplasia (SOD) all result from development defects of the anterior midline in the human forebrain. Objective: The objective of the study was to investigate whether KS, CPHD, and SOD have shared genetic origins. Design and Participants: A total of 103 patients with either CPHD (n = 35) or SOD (n = 68) were investigated for mutations in genes implicated in the etiology of KS (FGFR1, FGF8, PROKR2, PROK2, and KAL1). Consequences of identified FGFR1, FGF8, and PROKR2 mutations were investigated in vitro. Results: Three patients with SOD had heterozygous mutations in FGFR1; these were either shown to alter receptor signaling (p.S450F, p.P483S) or predicted to affect splicing (c.336C>T, p.T112T). One patient had a synonymous change in FGF8 (c.216G>A, p.T72T) that was shown to affect splicing and ligand signaling activity. Four patients with CPHD/SOD were found to harbor heterozygous rare loss-of-function variants in PROKR2 (p.R85G, p.R85H, p.R268C). Conclusions: Mutations in FGFR1/FGF8/PROKR2 contributed to 7.8% of our patients with CPHD/SOD. These data suggest a significant genetic overlap between conditions affecting the development of anterior midline in the human forebrain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Squamous cell carcinomas (SCCs) are highly heterogeneous tumours, resulting from deranged expression of genes involved in squamous cell differentiation. Here we report that microRNA-34a (miR-34a) functions as a novel node in the squamous cell differentiation network, with SIRT6 as a critical target. miR-34a expression increases with keratinocyte differentiation, while it is suppressed in skin and oral SCCs, SCC cell lines, and aberrantly differentiating primary human keratinocytes (HKCs). Expression of this miRNA is restored in SCC cells, in parallel with differentiation, by reversion of genomic DNA methylation or wild-type p53 expression. In normal HKCs, the pro-differentiation effects of increased p53 activity or UVB exposure are miR-34a-dependent, and increased miR-34a levels are sufficient to induce differentiation of these cells both in vitro and in vivo. SIRT6, a sirtuin family member not previously connected with miR-34a function, is a direct target of this miRNA in HKCs, and SIRT6 down-modulation is sufficient to reproduce the miR-34a pro-differentiation effects. The findings are of likely biological significance, as SIRT6 is oppositely expressed to miR-34a in normal keratinocytes and keratinocyte-derived tumours.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epithelial-mesenchymal interactions are key to skin morphogenesis and homeostasis. We report that maintenance of the hair follicle keratinocyte cell fate is defective in mice with mesenchymal deletion of the CSL/RBP-Jkappa gene, the effector of "canonical" Notch signaling. Hair follicle reconstitution assays demonstrate that this can be attributed to an intrinsic defect of dermal papilla cells. Similar consequences on hair follicle differentiation result from deletion of Wnt5a, a specific dermal papilla signature gene that we found to be under direct Notch/CSL control in these cells. Functional rescue experiments establish Wnt5a as an essential downstream mediator of Notch-CSL signaling, impinging on expression in the keratinocyte compartment of FoxN1, a gene with a key hair follicle regulatory function. Thus, Notch/CSL signaling plays a unique function in control of hair follicle differentiation by the underlying mesenchyme, with Wnt5a signaling and FoxN1 as mediators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we present a method to achieve tri-dimensional contouring of macroscopic objects. A modified reference wave speckle interferometer is used in conjunction with a source of reduced coherence. The depth signal is given by the envelope of the interference signal, directly determined by the coherence length of the source. Fringes are detected in the interferogram obtained by a single shot and are detected by means of adequate filtering. With the approach based on off-axis configuration, a contour line can be extracted from a single acquisition, thus allowing to use the system in harsh environment. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adipokine resistin is an insulin-antagonizing factor that also plays a regulatory role in inflammation, immunity, food intake, and gonadal function and also regulates growth hormone (GH) secretion in rat adenopituitary cells cultures with the adipokine. Although adipose tissue is the primary source of resistin, it is also expressed in other tissues, including the pituitary. The aim of this study is to investigate the possible action of resistin on the lipid metabolism in the pituitary gland in vivo (rats in two different nutritional status, fed and fast, treated with resistin on acute and a chronic way) and in vitro (adenopituitary cell cultures treated with the adipokine). Here, by a combination of in vivo and in vitro experimental models, we demonstrated that central acute and chronic administration of resistin enhance mRNA levels of the lipid metabolic enzymes which participated on lipolysis and moreover inhibiting mRNA levels of the lipid metabolic enzymes involved in lipogenesis. Taken together, our results demonstrate for the first time that resistin has a regulatory role on lipid metabolism in the pituitary gland providing a novel insight in relation to the mechanism by which this adipokine can participate in the integrated control of lipid metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CONTEXT Relationships between mind and body have gradually become accepted. Yogic practices cause modulation of the immune system. Transcendental meditation (TM) is a specific form of mantra meditation. We reported previously different plasma levels of catecholamines and pituitary hormones in TM practitioners comparing with a control group, and patterns of the daytime secretion of these hormones different from those normally described. AIMS The aim of the following study is to evaluate the immune system in these meditation practitioners, by determining leukocytes and lymphocytes subsets. METHODS TM group consisted of 19 subjects who regularly practice either TM or the more advanced Sidhi-TM technique. A control group consisted of 16 healthy subjects who had not previously used any relaxation technique. Total leukocytes, granulocytes, lymphocytes and monocytes were counted by an automated quantitative hematology analyzer, whereas lymphocytes subsets were determined by flow cytometry. Samples were taken from each subject at 0900 h after an overnight fast. RESULTS The results indicated that the TM group had higher values than the control group in CD3+CD4-CD8+ lymphocytes (P < 0.05), B lymphocytes (P < 0.01) and natural killer cells (P < 0.01), whereas CD3+CD4+CD8- lymphocytes showed low levels in meditation practitioners (P < 0.001). No significant differences were observed in total leukocytes, granulocytes, monocytes, total lymphocytes or CD3+ lymphocytes comparing both groups. CONCLUSIONS The technique of meditation studied seems to have a significant effect on immune cells, manifesting in the different circulating levels of lymphocyte subsets analyzed. The significant effect of TM on the neuroendocrine axis and its relationship with the immune system may partly explain our results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rat adrenal gland contains ganglion cells able to synthesize nitric oxide (NO). This messenger molecule controls and modulates adrenal secretory activity and blood flow. The present study analyzed the number, size, and distribution of NO-producing adrenal neurons in adulthood and during postnatal development by means of beta-nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry. This method reliably visualizes the enzyme responsible for NO generation. The reactive neurons per adrenal gland were 350-400 in both male and female adult rats. The positive nerve cell bodies were mostly located in the medulla, few being detected within the cortex and the subcapsular region. Dual labeling with anti-microtubule-associated protein 2 antibody, specific for neuronal elements, confirmed this distribution. Anti-microtubule-associated protein 1b antibody identified a subset of NADPH-d-positive neurons, displaying different degrees of maturation according to their position within the adrenal gland. At birth, there were about 220 NADPH-d-labeled neurons per adrenal gland in both sexes. As confirmed by dual immunocytochemical labeling, their great majority was evenly distributed between the cortex and the subcapsular region, the medulla being practically devoid of stained neurons. After birth, the number of adrenal NADPH-d-positive ganglion cells displayed a strong postnatal increase and reached the adult-like distribution after 1-2 months. During the period of increase, there was a transient difference in the numbers of these cells in the two sexes. Thus we present here evidence of plasticity in the number, size, and distribution of NADPH-d-positive adrenal neurons between birth and adulthood; in addition, we describe transient sex-related differences in their number and distribution during the 2nd postnatal week, which are possibly related to the epigenetic action of gonadal hormones during this period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CONTEXT Glucose-dependent insulinotropic peptide (GIP) has a central role in glucose homeostasis through its amplification of insulin secretion; however, its physiological role in adipose tissue is unclear. OBJECTIVE Our objective was to define the function of GIP in human adipose tissue in relation to obesity and insulin resistance. DESIGN GIP receptor (GIPR) expression was analyzed in human sc adipose tissue (SAT) and visceral adipose (VAT) from lean and obese subjects in 3 independent cohorts. GIPR expression was associated with anthropometric and biochemical variables. GIP responsiveness on insulin sensitivity was analyzed in human adipocyte cell lines in normoxic and hypoxic environments as well as in adipose-derived stem cells obtained from lean and obese patients. RESULTS GIPR expression was downregulated in SAT from obese patients and correlated negatively with body mass index, waist circumference, systolic blood pressure, and glucose and triglyceride levels. Furthermore, homeostasis model assessment of insulin resistance, glucose, and G protein-coupled receptor kinase 2 (GRK2) emerged as variables strongly associated with GIPR expression in SAT. Glucose uptake studies and insulin signaling in human adipocytes revealed GIP as an insulin-sensitizer incretin. Immunoprecipitation experiments suggested that GIP promotes the interaction of GRK2 with GIPR and decreases the association of GRK2 to insulin receptor substrate 1. These effects of GIP observed under normoxia were lost in human fat cells cultured in hypoxia. In support of this, GIP increased insulin sensitivity in human adipose-derived stem cells from lean patients. GIP also induced GIPR expression, which was concomitant with a downregulation of the incretin-degrading enzyme dipeptidyl peptidase 4. None of the physiological effects of GIP were detected in human fat cells obtained from an obese environment with reduced levels of GIPR. CONCLUSIONS GIP/GIPR signaling is disrupted in insulin-resistant states, such as obesity, and normalizing this function might represent a potential therapy in the treatment of obesity-associated metabolic disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pituitary tumor was diagnosed in a prepubertal 13-yr-old girl, who had elevated plasma LH (58 mIU/ml) and PRL (93 ng/ml) levels; decreased GH, ACTH, and FSH secretion; and diabetes insipidus. After surgery, plasma LH and PRL declined, but not to normal levels. Conventional external radiotherapy to the pituitary was immediately followed by a decrease in LH to prepubertal values (0.7 mIU/ml), while PRL levels became normal only after a long course of bromocriptine therapy. The pituitary tumor was composed of two distinct cell types: small polygonal cells, which were PRL positive by immunohistochemistry, and clusters of pleomorphic large frequently mitotic polynucleated cells, which were LH positive, some of them also being positive for the alpha-subunit or beta LH but not for beta FSH. Four years after surgery and radiotherapy, the patient deteriorated neurologically. Computed tomographic scan showed widespread frontal and periventricular tumor, which had the histological features of a poorly differentiated carcinoma. No PRL, LH, or alpha- or beta-subunits were detectable on immunocytochemistry. While the PRL-positive cells of the pituitary tumor displayed the histological and clinical features of PRL adenomas, the morphological characteristics of LH cells and the sharp decline of plasma LH levels after radiotherapy were suggestive of malignant transformation. In this context, the later brain tumor could have been the result of subependymal spread of the pituitary tumor after it lost its hormone-secreting capacity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern dietary habits are characterized by high-sodium and low-potassium intakes, each of which was correlated with a higher risk for hypertension. In this study, we examined whether long-term variations in the intake of sodium and potassium induce lasting changes in the plasma concentration of circulating steroids by developing a mathematical model of steroidogenesis in mice. One finding of this model was that mice increase their plasma progesterone levels specifically in response to potassium depletion. This prediction was confirmed by measurements in both male mice and men. Further investigation showed that progesterone regulates renal potassium handling both in males and females under potassium restriction, independent of its role in reproduction. The increase in progesterone production by male mice was time dependent and correlated with decreased urinary potassium content. The progesterone-dependent ability to efficiently retain potassium was because of an RU486 (a progesterone receptor antagonist)-sensitive stimulation of the colonic hydrogen, potassium-ATPase (known as the non-gastric or hydrogen, potassium-ATPase type 2) in the kidney. Thus, in males, a specific progesterone concentration profile induced by chronic potassium restriction regulates potassium balance.