858 resultados para Hydrologic Modeling Processes and River Flows


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We conducted surveys of fire and fuels managers at local, regional, and national levels to gain insights into decision processes and information flows in wildfire management. Survey results in the form of fire managers’ decision calendars show how climate information needs vary seasonally, over space, and through the organizational network, and help determine optimal points for introducing climate information and forecasts into decision processes. We identified opportunities to use climate information in fire management, including seasonal to interannual climate forecasts at all organizational levels, to improve the targeting of fuels treatments and prescribed burns, the positioning and movement of initial attack resources, and staffing and budgeting decisions. Longer-term (5–10 years) outlooks also could be useful at the national level in setting budget and research priorities. We discuss these opportunities and examine the kinds of organizational changes that could facilitate effective use of existing climate information and climate forecast capabilities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated how applicable European Life Cycle Inventory (LCI) data are to assessing the environmental impacts of the life cycle of Brazilian triple superphosphate (TSP). The LCI data used for the comparison were local Brazilian LCI data, European LCI data in its original version from the ecoinvent database and a modified version of the European LCI data, which had been adapted to better account for the Brazilian situation. We compared the three established datasets at the level of the inventory as well as for their environmental impacts, i.e. at the level of Life Cycle Environmental Assessment (LCIA). The analysis showed that the European LCIs (both the original and the modified ones) considered a broader spectrum of background processes and environmental flows (inputs and outputs). Nevertheless, TSP production had in all three cases similar values for the consumption of the main raw materials. The LCIA results obtained for the datasets showed important differences as well. Therefore we concluded that the European data in general lead to much higher environmental impacts than the Brazilian data. The differences between the LCIA results obtained with the Brazilian and the European data can be basically explained by the methodological differences underlying the data. The small differences at the LCI level for selected inputs and outputs between the Brazilian and the European LCIs from ecoinvent indicate that the latter can be regarded as applicable for characterizing the Brazilian TSP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O presente projeto tem como objetivo a aplicação de ferramentas do universo Lean Thinking na indústria corticeira de forma a identificar e eliminar fontes de desperdício, criar valor e envolver a organização numa cultura de melhoria contínua focada na satisfação do cliente. A Unidade Industrial de Lamas encontra-se a passar por uma fase de mudança e carece da aplicação de ferramentas 5S, Gestão Visual, Kaizen Diário e Standard Work, contempladas no seu programa de melhoria contínua intitulado de Cork.MAIS. A aplicação das ferramentas comprovam o sucesso em termos de qualidade e eficiência operacional. Os 5S conduzem à eficiência, segurança e organização dos postos de trabalho e quando implementados despoletam de forma natural a necessidade de implementação da ferramenta Gestão Visual que acarreta inúmeros benefícios visto que visa sistemas simples e intuitivos. A ferramenta Kaizen Diário contribuiu para aumentar a comunicação entre os diferentes turnos, alinhar os colaboradores com a estratégia da Unidade Industrial de Lamas e identificar oportunidades de melhoria fomentando o trabalho em equipa. A ferramenta Standard Work contribuiu para a redução dos encravamentos dos equipamentos SVE obtendo-se um aumento de 11% do Overall Equipment Effectiveness. Realizar uma retrospetiva de todos os processos e fluxos de produção tornou-se oportuno e, para tal, recorreu-se à ferramenta Value Stream Mapping. Todo o trabalho em equipa serviria para analisar o estado atual da cadeia de valor da Unidade Industrial de Lamas no que respeita ao planeamento e fluxos de material e informação, metodologia do controlo de produto e processo e eficiência operacional. Todas as oportunidades de melhoria identificadas e implementadas acrescentam valor à cadeia da organização mas dá-se destaque às ações de melhoria implementadas no âmbito do projeto de planeamento e fluxos de informação e material. Todas as novas ferramentas implementadas contempladas no sistema pull da organização conduziram a uma redução de 11% do material em work in process e um aumento de 25% da taxa de satisfação de encomendas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change would significantly affect many hydrologic systems, which in turn would affect the water availability, runoff, and the flow in rivers. This study evaluates the impacts of possible future climate change scenarios on the hydrology of the catchment area of the TungaBhadra River, upstream of the Tungabhadra dam. The Hydrologic Engineering Center's Hydrologic Modeling System version 3.4 (HEC-HMS 3.4) is used for the hydrological modelling of the study area. Linear-regression-based Statistical DownScaling Model version 4.2 (SDSM 4.2) is used to downscale the daily maximum and minimum temperature, and daily precipitation in the four sub-basins of the study area. The large-scale climate variables for the A2 and B2 scenarios obtained from the Hadley Centre Coupled Model version 3 are used. After model calibration and testing of the downscaling procedure, the hydrological model is run for the three future periods: 20112040, 20412070, and 20712099. The impacts of climate change on the basin hydrology are assessed by comparing the present and future streamflow and the evapotranspiration estimates. Results of the water balance study suggest increasing precipitation and runoff and decreasing actual evapotranspiration losses over the sub-basins in the study area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modeling of fluid flows in crystal growth processes has become an important research area in theoretical and applied mechanics. Most crystal growth processes involve fluid flows, such as flows in the melt, solution or vapor. Theoretical modeling has played an important role in developing technologies used for growing semiconductor crystals for high performance electronic and optoelectronic devices. The application of devices requires large diameter crystals with a high degree of crystallographic perfection, low defect density and uniform dopant distribution. In this article, the flow models developed in modeling of the crystal growth processes such as Czochralski, ammonothermal and physical vapor transport methods are reviewed. In the Czochralski growth modeling, the flow models for thermocapillary flow, turbulent flow and MHD flow have been developed. In the ammonothermal growth modeling, the buoyancy and porous media flow models have been developed based on a single-domain and continuum approach for the composite fluid-porous layer systems. In the physical vapor transport growth modeling, the Stefan flow model has been proposed based on the flow-kinetics theory for the vapor growth. In addition, perspectives for future studies on crystal growth modeling are proposed. (c) 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Light rainfall is the baseline input to the annual water budget in mountainous landscapes through the tropics and at mid-latitudes. In the Southern Appalachians, the contribution from light rainfall ranges from 50-60% during wet years to 80-90% during dry years, with convective activity and tropical cyclone input providing most of the interannual variability. The Southern Appalachians is a region characterized by rich biodiversity that is vulnerable to land use/land cover changes due to its proximity to a rapidly growing population. Persistent near surface moisture and associated microclimates observed in this region has been well documented since the colonization of the area in terms of species health, fire frequency, and overall biodiversity. The overarching objective of this research is to elucidate the microphysics of light rainfall and the dynamics of low level moisture in the inner region of the Southern Appalachians during the warm season, with a focus on orographically mediated processes. The overarching research hypothesis is that physical processes leading to and governing the life cycle of orographic fog, low level clouds, and precipitation, and their interactions, are strongly tied to landform, land cover, and the diurnal cycles of flow patterns, radiative forcing, and surface fluxes at the ridge-valley scale. The following science questions will be addressed specifically: 1) How do orographic clouds and fog affect the hydrometeorological regime from event to annual scale and as a function of terrain characteristics and land cover?; 2) What are the source areas, governing processes, and relevant time-scales of near surface moisture convergence patterns in the region?; and 3) What are the four dimensional microphysical and dynamical characteristics, including variability and controlling factors and processes, of fog and light rainfall? The research was conducted with two major components: 1) ground-based high-quality observations using multi-sensor platforms and 2) interpretive numerical modeling guided by the analysis of the in situ data collection. Findings illuminate a high level of spatial – down to the ridge scale - and temporal – from event to annual scale - heterogeneity in observations, and a significant impact on the hydrological regime as a result of seeder-feeder interactions among fog, low level clouds, and stratiform rainfall that enhance coalescence efficiency and lead to significantly higher rainfall rates at the land surface. Specifically, results show that enhancement of an event up to one order of magnitude in short-term accumulation can occur as a result of concurrent fog presence. Results also show that events are modulated strongly by terrain characteristics including elevation, slope, geometry, and land cover. These factors produce interactions between highly localized flows and gradients of temperature and moisture with larger scale circulations. Resulting observations of DSD and rainfall patterns are stratified by region and altitude and exhibit clear diurnal and seasonal cycles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Periods of drought and low streamflow can have profound impacts on both human and natural systems. People depend on a reliable source of water for numerous reasons including potable water supply and to produce economic value through agriculture or energy production. Aquatic ecosystems depend on water in addition to the economic benefits they provide to society through ecosystem services. Given that periods of low streamflow may become more extreme and frequent in the future, it is important to study the factors that control water availability during these times. In the absence of precipitation the slower hydrological response of groundwater systems will play an amplified role in water supply. Understanding the variability of the fraction of streamflow contribution from baseflow or groundwater during periods of drought provides insight into what future water availability may look like and how it can best be managed. The Mills River Basin in North Carolina is chosen as a case-study to test this understanding. First, obtaining a physically meaningful estimation of baseflow from USGS streamflow data via computerized hydrograph analysis techniques is carried out. Then applying a method of time series analysis including wavelet analysis can highlight signals of non-stationarity and evaluate the changes in variance required to better understand the natural variability of baseflow and low flows. In addition to natural variability, human influence must be taken into account in order to accurately assess how the combined system reacts to periods of low flow. Defining a combined demand that consists of both natural and human demand allows us to be more rigorous in assessing the level of sustainable use of a shared resource, in this case water. The analysis of baseflow variability can differ based on regional location and local hydrogeology, but it was found that baseflow varies from multiyear scales such as those associated with ENSO (3.5, 7 years) up to multi decadal time scales, but with most of the contributing variance coming from decadal or multiyear scales. It was also found that the behavior of baseflow and subsequently water availability depends a great deal on overall precipitation, the tracks of hurricanes or tropical storms and associated climate indices, as well as physiography and hydrogeology. Evaluating and utilizing the Duke Combined Hydrology Model (DCHM), reasonably accurate estimates of streamflow during periods of low flow were obtained in part due to the model’s ability to capture subsurface processes. Being able to accurately simulate streamflow levels and subsurface interactions during periods of drought can be very valuable to water suppliers, decision makers, and ultimately impact citizens. Knowledge of future droughts and periods of low flow in addition to tracking customer demand will allow for better management practices on the part of water suppliers such as knowing when they should withdraw more water during a surplus so that the level of stress on the system is minimized when there is not ample water supply.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this paper is to develop a second-moment closure with a near-wall turbulent pressure diffusion model for three-dimensional complex flows, and to evaluate the influence of the turbulent diffusion term on the prediction of detached and secondary flows. A complete turbulent diffusion model including a near-wall turbulent pressure diffusion closure for the slow part was developed based on the tensorial form of Lumley and included in a re-calibrated wall-normal-free Reynolds-stress model developed by Gerolymos and Vallet. The proposed model was validated against several one-, two, and three-dimensional complex flows.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Business Process Management describes a holistic management approach for the systematic design, modeling, execution, validation, monitoring and improvement of organizational business processes. Traditionally, most attention within this community has been given to control-flow aspects, i.e., the ordering and sequencing of business activities, oftentimes in isolation with regards to the context in which these activities occur. In this paper, we propose an approach that allows executable process models to be integrated with Geographic Information Systems. This approach enables process models to take geospatial and other geographic aspects into account in an explicit manner both during the modeling phase and the execution phase. We contribute a structured modeling methodology, based on the well-known Business Process Model and Notation standard, which is formalized by means of a mapping to executable Colored Petri nets. We illustrate the feasibility of our approach by means of a sustainability-focused case example of a process with important ecological concerns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Earth’s climate, as well as planetary climates in general, is broadly regulated by three fundamental parameters: the total solar irradiance, the planetary albedo and the planetary emissivity. Observations from series of different satellites during the last three decades indicate that these three quantities are generally very stable. The total solar irradiation of some 1,361 W/m2 at 1 A.U. varies within 1 W/m2 during the 11-year solar cycle (Fröhlich 2012). The albedo is close to 29 % with minute changes from year to year but with marked zonal differences (Stevens and Schwartz 2012). The only exception to the overall stability is a minor decrease in the planetary emissivity (the ratio between the radiation to space and the radiation from the surface of the Earth). This is a consequence of the increase in atmospheric greenhouse gas amounts making the atmosphere gradually more opaque to long-wave terrestrial radiation. As a consequence, radiation processes are slightly out of balance as less heat is leaving the Earth in the form of thermal radiation than the amount of heat from the incoming solar radiation. Present space-based systems cannot yet measure this imbalance, but the effect can be inferred from the increase in heat in the oceans where most of the heat accumulates. Minor amounts of heat are used to melt ice and to warm the atmosphere and the surface of the Earth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The potential impact of climate change on areas of strategic importance for water resources remains a concern. Here, river flow projections for the River Medway, above Teston in southeast England are presented, which is just such an area of strategic importance. The river flow projections use climate inputs from the Hadley Centre Regional Climate Model (HadRM3) for the time period 1960–2080 (a subset of the early release UKCP09 projections). River flow predictions are calculated using CATCHMOD, the main river flow prediction tool of the Environment Agency (EA) of England and Wales. In order to use this tool in the best way for climate change predictions, model setup and performance are analysed using sensitivity and uncertainty analysis. The model's representation of hydrological processes is discussed and the direct percolation and first linear storage constant parameters are found to strongly affect model results in a complex way, with the former more important for low flows and the latter for high flows. The uncertainty in predictions resulting from the hydrological model parameters is demonstrated and the projections of river flow under future climate are analysed. A clear climate change impact signal is evident in the results with a persistent lowering of mean daily river flows for all months and for all projection time slices. Results indicate that a projection of lower flows under future climate is valid even taking into account the uncertainties considered in this modelling chain exercise. The model parameter uncertainty becomes more significant under future climate as the river flows become lower. This has significant implications for those making policy decisions based on such modelling results. Copyright © 2010 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is a detailed study of hydrodynamic processes in a defined area, the littoral in front of the Venice Lagoon and its inlets, which are complex morphological areas of interconnection. A finite element hydrodynamic model of the Venice Lagoon and the Adriatic Sea has been developed in order to study the coastal current patterns and the exchanges at the inlets of the Venice Lagoon. This is the first work in this area that tries to model the interaction dynamics, running together a model for the lagoon and the Adriatic Sea. First the barotropic processes near the inlets of the Venice Lagoon have been studied. Data from more than ten tide gauges displaced in the Adriatic Sea have been used in the calibration of the simulated water levels. To validate the model results, empirical flux data measured by ADCP probes installed inside the inlets of Lido and Malamocco have been used and the exchanges through the three inlets of the Venice Lagoon have been analyzed. The comparison between modelled and measured fluxes at the inlets outlined the efficiency of the model to reproduce both tide and wind induced water exchanges between the sea and the lagoon. As a second step, also small scale processes around the inlets that connect the Venice lagoon with the Northern Adriatic Sea have been investigated by means of 3D simulations. Maps of vorticity have been produced, considering the influence of tidal flows and wind stress in the area. A sensitivity analysis has been carried out to define the importance of the advection and of the baroclinic pressure gradients in the development of vortical processes seen along the littoral close to the inlets. Finally a comparison with real data measurements, surface velocity data from HF Radar near the Venice inlets, has been performed, which allows for a better understanding of the processes and their seasonal dynamics. The results outline the predominance of wind and tidal forcing in the coastal area. Wind forcing acts mainly on the mean coastal current inducing its detachment offshore during Sirocco events and an increase of littoral currents during Bora events. The Bora action is more homogeneous on the whole coastal area whereas the Sirocco strengthens its impact in the South, near Chioggia inlet. Tidal forcing at the inlets is mainly barotropic. The sensitivity analysis shows how advection is the main physical process responsible for the persistent vortical structures present along the littoral between the Venice Lagoon inlets. The comparison with measurements from HF Radar not only permitted a validation the model results, but also a description of different patterns in specific periods of the year. The success of the 2D and the 3D simulations on the reproduction both of the SSE, inside and outside the Venice Lagoon, of the tidal flow, through the lagoon inlets, and of the small scale phenomena, occurring along the littoral, indicates that the finite element approach is the most suitable tool for the investigation of coastal processes. For the first time, as shown by the flux modeling, the physical processes that drive the interaction between the two basins were reproduced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In terms of changing flow and sediment regimes of rivers, dams are often regarded as the most dominant form of human impact on fluvial systems. Dams can decrease the flux of water and sediments leading to channel changes such as upstream aggradation and downstream degradation. The opposite effects occur when dams are removed. Channel degradation often requires further intervention in terms of river bed and bank protection works. The situation evolves more complex in river systems that are impacted by a series of dams due to feedback processes between the different system compartments. A number of studies have recently investigated geomorphic systems using connectivity approaches to improve the understanding of geomorphic system response to change. This paper presents a case study investigating the impact of dam construction, dam removal and dam-related river bed and bank protection measures on the sediment connectivity and channel morphology of the Fugnitz and the Kaja Rivers using a combination of DEM analyses, field surveys and landscape evolution modelling. For both river systems the results revealed low sediment connectivity accompanied by a fine river bed sediment facies in river sections upstream of active dams and of removed dams with protection measures. Contrarily, high sediment connectivity which was accompanied by a coarse river bed sediment facies was observed in river sections either located downstream of active dams or of removed dams with upstream protection. In terms of channel changes, significant channel degradation was examined at locations downstream of active dams and of removed dams. Channel bed and bank protection measures prevent erosion and channel slope recovery after dam removal. Landscape evolution modeling revealed a complex geomorphic response to dam construction and dam removal as sediment output rates and therefore geomorphic processes have been shown to act in a non-linear manner. These insights are deemed to have major implications for river management and conservation, as quality and state of riverine habitats are determined by channel morphology and river bed sediment composition.