883 resultados para Human Model
Resumo:
General introductionThe Human Immunodeficiency/Acquired Immunodeficiency Syndrome (HIV/AIDS) epidemic, despite recent encouraging announcements by the World Health Organization (WHO) is still today one of the world's major health care challenges.The present work lies in the field of health care management, in particular, we aim to evaluate the behavioural and non-behavioural interventions against HIV/AIDS in developing countries through a deterministic simulation model, both in human and economic terms. We will focus on assessing the effectiveness of the antiretroviral therapies (ART) in heterosexual populations living in lesser developed countries where the epidemic has generalized (formerly defined by the WHO as type II countries). The model is calibrated using Botswana as a case study, however our model can be adapted to other countries with similar transmission dynamics.The first part of this thesis consists of reviewing the main mathematical concepts describing the transmission of infectious agents in general but with a focus on human immunodeficiency virus (HIV) transmission. We also review deterministic models assessing HIV interventions with a focus on models aimed at African countries. This review helps us to recognize the need for a generic model and allows us to define a typical structure of such a generic deterministic model.The second part describes the main feed-back loops underlying the dynamics of HIV transmission. These loops represent the foundation of our model. This part also provides a detailed description of the model, including the various infected and non-infected population groups, the type of sexual relationships, the infection matrices, important factors impacting HIV transmission such as condom use, other sexually transmitted diseases (STD) and male circumcision. We also included in the model a dynamic life expectancy calculator which, to our knowledge, is a unique feature allowing more realistic cost-efficiency calculations. Various intervention scenarios are evaluated using the model, each of them including ART in combination with other interventions, namely: circumcision, campaigns aimed at behavioral change (Abstain, Be faithful or use Condoms also named ABC campaigns), and treatment of other STD. A cost efficiency analysis (CEA) is performed for each scenario. The CEA consists of measuring the cost per disability-adjusted life year (DALY) averted. This part also describes the model calibration and validation, including a sensitivity analysis.The third part reports the results and discusses the model limitations. In particular, we argue that the combination of ART and ABC campaigns and ART and treatment of other STDs are the most cost-efficient interventions through 2020. The main model limitations include modeling the complexity of sexual relationships, omission of international migration and ignoring variability in infectiousness according to the AIDS stage.The fourth part reviews the major contributions of the thesis and discusses model generalizability and flexibility. Finally, we conclude that by selecting the adequate interventions mix, policy makers can significantly reduce the adult prevalence in Botswana in the coming twenty years providing the country and its donors can bear the cost involved.Part I: Context and literature reviewIn this section, after a brief introduction to the general literature we focus in section two on the key mathematical concepts describing the transmission of infectious agents in general with a focus on HIV transmission. Section three provides a description of HIV policy models, with a focus on deterministic models. This leads us in section four to envision the need for a generic deterministic HIV policy model and briefly describe the structure of such a generic model applicable to countries with generalized HIV/AIDS epidemic, also defined as pattern II countries by the WHO.
Resumo:
Human electrophysiological studies support a model whereby sensitivity to so-called illusory contour stimuli is first seen within the lateral occipital complex. A challenge to this model posits that the lateral occipital complex is a general site for crude region-based segmentation, based on findings of equivalent hemodynamic activations in the lateral occipital complex to illusory contour and so-called salient region stimuli, a stimulus class that lacks the classic bounding contours of illusory contours. Using high-density electrical mapping of visual evoked potentials, we show that early lateral occipital cortex activity is substantially stronger to illusory contour than to salient region stimuli, whereas later lateral occipital complex activity is stronger to salient region than to illusory contour stimuli. Our results suggest that equivalent hemodynamic activity to illusory contour and salient region stimuli probably reflects temporally integrated responses, a result of the poor temporal resolution of hemodynamic imaging. The temporal precision of visual evoked potentials is critical for establishing viable models of completion processes and visual scene analysis. We propose that crude spatial segmentation analyses, which are insensitive to illusory contours, occur first within dorsal visual regions, not the lateral occipital complex, and that initial illusory contour sensitivity is a function of the lateral occipital complex.
Resumo:
Purpose: Animal models are essential to study pathological mechanisms and to test new therapeutic strategies. Many mouse models mimic human rod loss but only a limited number simulate cone dystrophies. The importance of cone function for human vision highlights the need to engineer a model for cone degeneration. An approach of lentiviral-directed transgenesis was tested in mice to express a dominant mutant gene described in a human cone dystrophy.Methods: Lentiviral vectors (LV) encoding either hrGFPII or the human double mutant GUCY2DE837D/R838S cDNA under the control of a region of the pig arrestin-3 promoter (Arr3) were produced and used for lentiviral-derived transgenesis. PCR-genotyping determined the transgenic mouse ratio. The expression of GFP was then analyzed both in vivo and by immunohistochemistry in Arr3-GFPII mice. Functional analysis was performed by ERG at 5, 9, 16 and 24 weeks for Arr3-GUCY2DE837D/R838S mice. Mice were sacrificed at 10 months of age for both histological analysis and RNA extraction.Results: While all the newborns from the transgenesis using the LV-Arr3-GFPII were transgenic, one third of the newborns from the LV-Arr3-GUCY2DE837D/R838S transgenesis were positive. Expression of GFPII was demonstrated by in vivo imaging, while expression of the mutant GUCY2D transcript was detetected using RT-PCR. No severe alteration of the functional response was observed up to 24 weeks of age in the transgenic mice. No obvious modification of the retinal morphology was identified either.Conclusions: Lentiviral-directed transgenesis is a rapid and straightforward method to engineer transgenic mice. Protein expression can be specifically targeted to the retina and thus could help to study the effect of expression of dominant mutant proteins. In our case, Arr3-GUCY2DE837D/R838S mice have a less severe phenotype than that described for human patients. Further analyses are required to understand this difference but several modifications of the expression cassette might also help to increase the expression of the mutant protein and reinforce the phenotype. Interestingly, the same construct is less effective in mouse versus pig retina (see Arsenijevic et al. ARVO 2011 abstract).
Resumo:
Intravenous administration of polyclonal and monoclonal antibodies has proven to be a clinically valid approach in the treatment, or at least relief, of many acute and chronic pathologies, such as infection, immunodeficiency, and a broad range of autoimmune conditions. Plasma-derived IgG or recombinant IgG are most frequently used for intravenous or subcutaneous administration, whereas a few IgM-based products are available as well. We have established recently that secretory-like IgA and IgM can be produced upon association of plasma-derived polymeric IgA and IgM with a recombinant secretory component. As a next step toward potential future mucosal administration, we sought to unravel the mechanisms by which these secretory Igs protect epithelial cells located at the interface between the environment and the inside of the body. By using polarized epithelial Caco-2 cell monolayers and Shigella flexneri as a model enteropathogen, we found that polyspecific plasma-derived SIgA and SIgM fulfill many protective functions, including dose-dependent recognition of the antigen via formation of aggregated immune complexes, reduction of bacterial infectivity, maintenance of epithelial cell integrity, and inhibition of proinflammatory cytokine/chemokine production by epithelial cells. In this in vitro model devoid of other cellular or molecular interfering partners, IgM and secretory IgM showed stronger bacterial neutralization than secretory IgA. Together, these data suggest that mucosally delivered antibody preparations may be most effective when combining both secretory-like IgA and IgM, which, together, play a crucial role in preserving several levels of epithelial cell integrity.
Resumo:
Significant decrease in human immunodeficiency virus type 1 (HIV-1) vertical transmission has been observed worldwide in centers where interventions such as antiretroviral therapy (ART), elective cesarean section, and avoidance of breastfeeding have been implemented. This prospective cohort study aimed to assess the determinants of and the temporal trends in HIV-1 vertical transmission in the metropolitan area of Belo Horizonte, Brazil from January 1998 to December 2005. The rate of HIV-1 vertical transmission decreased from 20% in 1998 to 3% in 2005. This decline was associated with increased use of more complex ART regimens during pregnancy. Multivariate analysis restricted to clinical variables demonstrated that non ART, neonatal respiratory distress/sepsis and breastfeeding were independently associated with HIV-1 vertical transmission. When laboratory parameters were included in the model, high maternal viral load and non maternal ART were associated with HIV-1 vertical transmission. The results from this study confirm the impact of ART in the reduction of HIV-1 vertical transmission and indicate the need for improvement in the care and monitoring of mother and infant pairs affected by HIV-1.
Resumo:
Leishmaniasis causes significant morbidity and mortality, constituting an important global health problem for which there are few effective drugs. Given the urgent need to identify a safe and effective Leishmania vaccine to help prevent the two million new cases of human leishmaniasis worldwide each year, all reasonable efforts to achieve this goal should be made. This includes the use of animal models that are as close to leishmanial infection in humans as is practical and feasible. Old world monkey species (macaques, baboons, mandrills etc.) have the closest evolutionary relatedness to humans among the approachable animal models. The Asian rhesus macaques (Macaca mulatta) are quite susceptible to leishmanial infection, develop a human-like disease, exhibit antibodies to Leishmania and parasite-specific T-cell mediated immune responses both in vivo and in vitro, and can be protected effectively by vaccination. Results from macaque vaccine studies could also prove useful in guiding the design of human vaccine trials. This review summarizes our current knowledge on this topic and proposes potential approaches that may result in the more effective use of the macaque model to maximize its potential to help the development of an effective vaccine for human leishmaniasis.
Resumo:
OBJECTIVE: The reverse transcriptase inhibitor efavirenz is currently used at a fixed dose of 600 mg/d. However, dosage individualization based on plasma concentration monitoring might be indicated. This study aimed to assess the efavirenz pharmacokinetic profile and interpatient versus intrapatient variability in patients who are positive for human immunodeficiency virus, to explore the relationship between drug exposure, efficacy, and central nervous system toxicity and to build up a Bayesian approach for dosage adaptation. METHODS: The population pharmacokinetic analysis was performed by use of NONMEM based on plasma samples from a cohort of unselected patients receiving efavirenz. With the use of a 1-compartment model with first-order absorption, the influence of demographic and clinical characteristics on oral clearance and oral volume of distribution was examined. The average drug exposure during 1 dosing interval was estimated for each patient and correlated with markers of efficacy and toxicity. The population kinetic parameters and the variabilities were integrated into a Bayesian equation for dosage adaptation based on a single plasma sample. RESULTS: Data from 235 patients with a total of 719 efavirenz concentrations were collected. Oral clearance was 9.4 L/h, oral volume of distribution was 252 L, and the absorption rate constant was 0.3 h(-1). Neither the demographic covariates evaluated nor the comedications showed a clinically significant influence on efavirenz pharmacokinetics. A large interpatient variability was found to affect efavirenz relative bioavailability (coefficient of variation, 54.6%), whereas the intrapatient variability was small (coefficient of variation, 26%). An inverse correlation between average drug exposure and viral load and a trend with central nervous system toxicity were detected. This enabled the derivation of a dosing adaptation strategy suitable to bring the average concentration into a therapeutic target from 1000 to 4000 microg/L to optimize viral load suppression and to minimize central nervous system toxicity. CONCLUSIONS: The high interpatient and low intrapatient variability values, as well as the potential relationship with markers of efficacy and toxicity, support the therapeutic drug monitoring of efavirenz. However, further evaluation is needed before individualization of an efavirenz dosage regimen based on routine drug level monitoring should be recommended for optimal patient management.
Resumo:
The intestinal anti-inflammatory effects of two probiotics isolated from breast milk, Lactobacillus reuteri and L. fermentum, were evaluated and compared in the trinitrobenzenesulfonic acid (TNBS) model of rat colitis. Colitis was induced in rats by intracolonic administration of 10 mg TNBS dissolved in 50% ethanol (0.25 ml). Either L. reuteri or L. fermentum was daily administered orally (5 x 10(8) colony-forming units suspended in 0.5 ml skimmed milk) to each group of rats (n 10) for 3 weeks, starting 2 weeks before colitis induction. Colonic damage was evaluated histologically and biochemically, and the colonic luminal contents were used for bacterial studies and for SCFA production. Both probiotics showed intestinal anti-inflammatory effects in this model of experimental colitis, as evidenced histologically and by a significant reduction of colonic myeloperoxidase activity (P<0.05). L. fermentum significantly counteracted the colonic glutathione depletion induced by the inflammatory process. In addition, both probiotics lowered colonic TNFalpha levels (P<0.01) and inducible NO synthase expression when compared with non-treated rats; however, the decrease in colonic cyclo-oxygenase-2 expression was only achieved with L.fermentum administration. Finally, the two probiotics induced the growth of Lactobacilli species in comparison with control colitic rats, but the production of SCFA in colonic contents was only increased when L. fermentum was given. In conclusion, L. fermentum can exert beneficial immunomodulatory properties in inflammatory bowel disease, being more effective than L. reuteri, a probiotic with reputed efficacy in promoting beneficial effects on human health.
Resumo:
Reconstruction of large oral mucosa defects is often challenging, since the shortage of healthy oral mucosa to replace the excised tissues is very common. In this context, tissue engineering techniques may provide a source of autologous tissues available for transplant in these patients. In this work, we developed a new model of artificial oral mucosa generated by tissue engineering using a fibrin-agarose scaffold. For that purpose, we generated primary cultures of human oral mucosa fibroblasts and keratinocytes from small biopsies of normal oral mucosa using enzymatic treatments. Then we determined the viability of the cultured cells by electron probe quantitative X-ray microanalysis, and we demonstrated that most of the cells in the primary cultures were alive and had high K/Na ratios. Once cell viability was determined, we used the cultured fibroblasts and keratinocytes to develop an artificial oral mucosa construct by using a fibrin-agarose extracellular matrix and a sequential culture technique using porous culture inserts. Histological analysis of the artificial tissues showed high similarities with normal oral mucosa controls. The epithelium of the oral substitutes had several layers, with desmosomes and apical microvilli and microplicae. Both the controls and the oral mucosa substitutes showed high suprabasal expression of cytokeratin 13 and low expression of cytokeratin 10. All these results suggest that our model of oral mucosa using fibrin-agarose scaffolds show several similarities with native human oral mucosa.
Resumo:
Monocytes/macrophages are important targets for dengue virus (DENV) replication; they induce inflammatory mediators and are sources of viral dissemination in the initial phase of the disease. Apoptosis is an active process of cellular destruction genetically regulated, in which a complex enzymatic pathway is activated and may be trigged by many viral infections. Since the mechanisms of apoptotic induction in DENV-infected target cells are not yet defined, we investigated the virus-cell interaction using a model of primary human monocyte infection with DENV-2 with the aim of identifying apoptotic markers. Cultures analyzed by flow cytometry and confocal microscopy yielded DENV antigen positive cells with rates that peaked at the second day post infection (p.i.), decayed afterwards and produced the apoptosis-related cytokines TNF-α and IL-10. Phosphatidylserine, an early marker for apoptosis, was increased at the cell surface and the Fas death receptor was upregulated at the second day p.i. at significantly higher rates in DENV infected cell cultures than controls. However, no detectable changes were observed in the expression of the anti-apoptotic protein Bcl-2 in infected cultures. Our data support virus modulation of extrinsic apoptotic factors in the in vitro model of human monocyte DENV-2 infection. DENV may be interfering in activation and death mechanisms by inducing apoptosis in target cells.
Resumo:
The development of new medical devices, such as aortic valves, requires numerous preliminary studies on animals and training of personnel on cadavers before the devices can be used in patients. Postmortem circulation, a technique used for postmortem angiography, allows the vascular system to be reperfused in a way similar to that in living persons. This technique is used for postmortem investigations to visualize the human vascular system and to make vascular diagnoses. Specific material for reperfusing a human body was developed recently. Our aim was to investigate whether postmortem circulation that imitates in vivo conditions allows for the testing of medical materials on cadavers. We did this by delivering an aortic valve using minimally invasive methods. Postmortem circulation was established in eight corpses to recreate an environment as close as possible to in vivo conditions. Mobile fluoroscopy and a percutaneous catheterization technique were used to deliver the material to the correct place. Once the valve was implanted, the heart and primary vessels were extracted to confirm its position. Postmortem circulation proved to be essential in several of the cadavers because it helped the clinicians to deliver the material and improve their implantation techniques. Due to the intravascular circulation, sites with substantial arteriosclerotic stenosis could be bypassed, which would have been impossible without perfusion. Although originally developed for postmortem investigations, this reperfusion technique could be useful for testing new medical devices intended for living patients.
Resumo:
BACKGROUND: Intravitreal neovascular diseases, as in ischemic retinopathies, are a major cause of blindness. Because inflammatory mechanisms influence vitreal neovascularization and cyclooxygenase (COX)-2 promotes tumor angiogenesis, we investigated the role of COX-2 in ischemic proliferative retinopathy. METHODS AND RESULTS: We describe here that COX-2 is induced in retinal astrocytes in human diabetic retinopathy, in the murine and rat model of ischemic proliferative retinopathy in vivo, and in hypoxic astrocytes in vitro. Specific COX-2 but not COX-1 inhibitors prevented intravitreal neovascularization, whereas prostaglandin E2, mainly via its prostaglandin E receptor 3 (EP3), exacerbated neovascularization. COX-2 inhibition induced an upregulation of thrombospondin-1 and its CD36 receptor, consistent with the observed antiangiogenic effects of COX-2 inhibition; EP3 stimulation reversed effects of COX-2 inhibitors on thrombospondin-1 and CD36. CONCLUSIONS: These findings point to an important role for COX-2 in ischemic proliferative retinopathy, as in diabetes.
Resumo:
Objective: Intimal hyperplasia (IH) is one of the leading causes of failure¦after vascular interventions. It involves the proliferation of smooth muscle¦cells (SMCs) and the production of extracellular fibrous matrix. Gap junctional¦communication, mediated by membrane connexins (Cx), participates to the¦control of proliferation and migration. In human and mice vessels, endothelial¦cells (ECs) express Cx37, Cx40 and Cx43, whereas SMCs are coupled by Cx43.¦We previously reported that Cx43 was increased in the SMCs of a human vein¦during the development of IH.¦In our experimental model of mice carotid artery ligation (CAL), luminal¦narrowing occurred by SMCs-rich neointima after 2-4 weeks of ligation.¦This experimental model of mice allows us to decipher the regulation of the¦cardiovascular connexins in the mouse.¦Methods: C57BL/6 mice were anesthetized and the left common carotid artery¦was dissected through a neck incision and ligated near the carotid bifurcation.¦The mice were then euthanized at 7, 14 and 28 days. Morphometric analyses¦were then performed with measurements of total area, lumen and intimal area¦and media thickness. Western blots, immunocytochemistry and quantitative¦RT-PCR were performed for Cx43, Cx40 and Cx37.¦Results: All animals recovered with no symptom of stroke. Morphometric¦analysis demonstrated that carotid ligation resulted in an initial increase (after¦7 days) of the total vessel area followed by its reduction (after 28 days). This¦phenomena was associated with a progressive increase in the intimal area and a¦consecutive decrease of the lumen. The media thickness was also increased after¦14 and 28 days. This neointima formation was associated to a marked increase¦in the expression of Cx43 at both protein and RNA levels. Concomitantly,¦Cx40 and Cx37 protein expression were reduced in the endothelium. This was¦confirmed by en face analyses showing reduced Cx37 and Cx40 levels in the¦endothelial cells covering the lesion.¦Conclusion: This study assessed the regulation of the cardiovascular connexins¦in the development of IH. This model will allow us to characterize the¦involvement of gap junctions in the IH. In turn, this understanding is¦instrumental for the development of new therapeutical tools, as well as for¦the evaluation of the effects of drugs and gene therapies of this disease for which¦there is no efficient therapy available.
Resumo:
Metabolic problems lead to numerous failures during clinical trials, and much effort is now devoted to developing in silico models predicting metabolic stability and metabolites. Such models are well known for cytochromes P450 and some transferases, whereas less has been done to predict the activity of human hydrolases. The present study was undertaken to develop a computational approach able to predict the hydrolysis of novel esters by human carboxylesterase hCES2. The study involved first a homology modeling of the hCES2 protein based on the model of hCES1 since the two proteins share a high degree of homology (congruent with 73%). A set of 40 known substrates of hCES2 was taken from the literature; the ligands were docked in both their neutral and ionized forms using GriDock, a parallel tool based on the AutoDock4.0 engine which can perform efficient and easy virtual screening analyses of large molecular databases exploiting multi-core architectures. Useful statistical models (e.g., r (2) = 0.91 for substrates in their unprotonated state) were calculated by correlating experimental pK(m) values with distance between the carbon atom of the substrate's ester group and the hydroxy function of Ser228. Additional parameters in the equations accounted for hydrophobic and electrostatic interactions between substrates and contributing residues. The negatively charged residues in the hCES2 cavity explained the preference of the enzyme for neutral substrates and, more generally, suggested that ligands which interact too strongly by ionic bonds (e.g., ACE inhibitors) cannot be good CES2 substrates because they are trapped in the cavity in unproductive modes and behave as inhibitors. The effects of protonation on substrate recognition and the contrasting behavior of substrates and products were finally investigated by MD simulations of some CES2 complexes.
Resumo:
Three out of five human endometrial carcinomas were successfully grafted into nude mice (BALB/c/nu/nu). Two of these tumors could be maintained by serial transplantation. The morphological characteristics displayed by the grafted tumors were comparable to those of the original carcinomas. Permanent cell lines were established from these two tumors. Reinjection of cells grown in vitro into nude mice produced nodules of identical histology as compared to original solid transplants. The influence of medroxyprogesterone acetate on tumor growth in vivo and cell proliferation in vitro was studied. This hormonal treatment did not produce any significant effect on tumor cells, either in vitro or in vivo, for the two endometrial carcinomas. After medroxyprogesterone administration, a slight but non-significant growth inhibition of the tumor cells in vitro was observed and the tumor transplants in vivo did not appear to be influenced. The experiments illustrate the possible use of this model for testing potential anti-cancer agents.