931 resultados para Homeostatic proliferation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Bovine besnoitiosis, caused by the protozoan Besnoitia besnoiti, reduces productivity and fertility of affected herds. Besnoitiosis continues to expand in Europe and no effective control tools are currently available. Experimental models are urgently needed. Herein, we describe for the first time the kinetics of standardised in vitro models for the B. besnoiti lytic cycle. This will aid to study the pathogenesis of the disease, in the screening for vaccine targets and drugs potentially useful for the treatment of besnoitiosis. Methods We compared invasion and proliferation of one B. tarandi (from Finland) and seven B. besnoiti isolates (Bb-Spain1, Bb-Spain2, Bb-Israel, Bb-Evora03, Bb-Ger1, Bb-France, Bb-Italy2) in MARC-145 cell culture. Host cell invasion was studied at 4, 6, 8 and 24 h post infection (hpi), and proliferation characteristics were compared at 24, 48, 72, 96, 120, and 144 hpi. Results In Besnoitia spp., the key parameters that determine the sequential adhesion-invasion, proliferation and egress steps are clearly distinct from those in the related apicomplexans Toxoplasma gondii and Neospora caninum. Besnoitia spp. host cell invasion is a rather slow process, since only 50 % of parasites were found intracellular after 3–6 h of exposure to host cells, and invasion still took place after 24 h. Invasion efficacy was significantly higher for Bb-France, Bb-Evora03 and Bb-Israel. In addition, the time span for endodyogeny to take place was as long as 18–35 h. Bb-Israel and B. tarandi isolates were most prolific, as determined by the tachyzoite yield at 72 hpi. The total tachyzoite yield could not be predicted neither by invasion-related parameters (velocity and half time invasion) nor by proliferation parameters (lag phase and doubling time (dT)). The lytic cycle of Besnoitia was asynchronous as evidenced by the presence of three different plaque-forming tachyzoite categories (lysis plaques, large and small parasitophorous vacuoles). Conclusions This study provides first insights into the lytic cycle of B. besnoiti isolates and a standardised in vitro model that allows screening of drug candidates for the treatment of besnoitiosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intracellular parasite Theileria parva infects and transforms bovine T-cells, inducing their uncontrolled proliferation and spread in non-lymphoid as well as lymphoid tissues. This parasite-induced transformation is the predominant factor contributing to the pathogenesis of a lymphoproliferative disease, called East Coast fever. T. parva-transformed cells become independent of antigenic stimulation or exogenous growth factors. A dissection of the signalling pathways that are activated in T. parva-infected cells shows that the parasite bypasses signalling pathways that normally emanate from the T-cell antigen receptor to induce continuous proliferation. This review concentrates on the influence of the parasite on the state of activation of the mitogen-activated protein kinase (MAPK), NF-kappaB and phosphoinositide-3-kinase (PI3-K) pathways in the host cell. Of the MAPKs, JNK, but not ERK or p38, is active, inducing constitutive activation of the transcription factors AP-1 and ATF-2. A crucial step in the transformation process is the persistent activation of the transcription factor NF-kappaB, which protects T. parva-transformed cells from spontaneous apoptosis accompanying the transformation process. Inhibitor studies also suggest an important role for the lipid kinase, PI-3K, in the continuous proliferation of T. parva-transformed lymphocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interleukin 4 (IL-4) is a pleotropic cytokine affecting a wide range of cell types in both the mouse and the human. These activities include regulation of the growth and differentiation of both T and B lymphocytes. The activities of IL-4 in nonprimate, nonmurine systems are not well established. Herein, we demonstrate in the bovine system that IL-4 upregulates production of IgM, IgG1, and IgE in the presence of a variety of costimulators including anti-IgM, Staphylococcus aureus cowan strain I, and pokeweed mitogen. IgE responses are potentiated by the addition of IL-2 to IL-4. Culture of bovine B lymphocytes with IL-4 in the absence of additional costimulators resulted in the increased surface expression of CD23 (low-affinity Fc epsilon RII), IgM, IL-2R, and MHC class II in a dose-dependent manner. IL-4 alone increased basal levels of proliferation of bulk peripheral blood mononuclear cells but in the presence of Con A inhibited proliferation. In contrast to the activities of IL-4 in the murine system, proliferation of TH1- and TH2-like clones was inhibited in a dose-dependent manner as assessed by antigen-or IL-2-driven in vitro proliferative responses. These observations are consistent with the role of IL-4 as a key player in regulation of both T and B cell responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During development, embryos must carefully integrate the processes of cell proliferation and differentiation. TH has been identified in Xenopus laevis as a gene product that functions in regulating differentiation of the neural ectoderm through its effect on cell proliferation. However, the mechanism and molecular pathway through which TH functions are not known. We identified the Xenopus FK506 binding protein homolog (XFKBP12) as a protein that interacted with TH in a yeast two-hybrid screen with TH as the bait. The direct and specific interaction between TH and XFKBP12 was supported by several tests including CO-IP, drug competence assay and mutagenesis analysis. To investigate the function of XFKBP12 during embryogenesis, we created an XFKBP12 loss of function embryo using antisense morpholino oligonucleotides (MO). XFKBP12 MO injected embryos displayed similar phenotypes as TH depleted embryos. We also demonstrated that both TH and XFKBP12 functioned through the TOR signaling pathway which is a target for cancer therapies. The interaction between TH and XFKBP 12 was required to regulate the proliferation of neural cells. Therefore, our study indicates that TH represents the endogenous ligand of XFKBP12 and together they coordinate neural cell proliferation and differentiation through the conserved rapamycin sensitive TOR pathway. Thus, understanding how this pathway functions in development will not only provide us important insights into the relationship between proliferation and differentiation, but help design rational cancer therapies targeting this pathway. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last few years, our laboratory has studied the regulatory mechanisms of proliferation and differentiation in epidermal tissues. Our results showed differences in the roles of cyclin dependent-kinases 4 and 6, and the three D-type cyclins, during normal epidermal proliferation and neoplastic development. Thus, to elucidate the role of the different cell cycle regulators, we developed transgenic mice that overexpress CDK4 (K5-CDK4), or their cognate D-type cyclins, in epithelial tissues. The most severe phenotype was observed in K5-CDK4 animals that developed dermal fibrosis, epidermal hyperplasia and hypertrophy. Forced expression of CDK4 in the epidermal basal cell layer increased the malignant conversion of skin papillomas to squamous cell carcinomas (SCC). Contrastingly, lack of CDK4 completely inhibited tumor development, suggesting that CDK4 is required in this process. Biochemical studies demonstrated that p21 Cip1 and p27Kip1 inhibitors are sequestered by CDK4 resulting in indirect activation of Cyclin E/CDK2, implicating the non-catalytic activity of CDK4 in deregulation of the cell cycle progression. ^ It has been proposed that the proliferative and oncogenic role of Myc is linked to its ability to induce the transcription of CDK4, cyclin D1, and cyclin D2 in vitro. Deregulation of Myc oncogene has been found in several human cancers. Also it has been demonstrated that CDK4 has the ability to functionally inactivate the product of the tumor suppressor gene Rb, providing a link between Myc and the CDK4/cyclin D1/pRb/p16 pathway in some malignant tumors. Here, we sought to determine the role of CDK4 as a mediator of Myc activities by developing a Myc overexpressing mouse nullizygous for CDK4. We demonstrated that lack of CDK4 results in reduced keratinocyte proliferation and epidermal thickness in K5-Myc/CDK4-null mice. In addition, complete reversion of tumor development was observed. All together, this work demonstrates that CDK4 acts as an oncogene independent of the D-type cyclin levels and it is an important mediator of the tumorigenesis induced by Myc. In addition, we showed that the sequestering activity of CDK4 is critical for the development of epidermal hyperplasia during normal proliferation, malignant progression from papillomas to squamous cell carcinomas, and tumorigenesis induced by Myc. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bcl-2, a crucial regulator of cell survival, is frequently overexpressed in basal cell carcinomas (BCCs), the most commonly diagnosed cancers. Regulation of bcl-2 expression in epidermal keratinocytes is not well characterized. In the epidermis, bcl-2 is expressed only in keratinocytes of the basal layer and the outer root sheath of hair follicles and no bcl-2 expression in suprabasalar keratinocytes. The calcium gradient in the epidermis is a potent regulator of keratinocyte differentiation. Increasing calcium concentrations associated with differentiation, resulted in the downregulation of a 2.9 kb bcl-2 promoter luciferase construct. The AP-1 family of transcription factors is differentially expressed in the strata of the epidermis and has been shown to be involved in the stage specific expression of numerous differentiation markers in the epidermis. In silico analysis of the bcl-2 promoter and gene reporter assays showed that co-transfection of JUNB and JUND, but not other AP-1 dimers, caused a significant upregulation of the bcl-2 promoter in primary keratinocytes. Immunoelectrophoretic mobility shift assays, in vivo chromatin immunoprecipitation (ChIP) studies and mutational analysis of AP-1 binding site 3 on the bcl-2 promoter identified it as the site involved in bcl-2 regulation. Utilizing site directed mutants, we determined that phosphorylation at Ser90/Ser100 residues of JUND is required for the activation of the bcl-2 promoter. ^ The sonic hedgehog (SHH) pathway is frequently deregulated in BCCs and, we have shown that GLI1 upregulates bcl-2 in keratinocytes. While examining potential regulation of the SHH pathway extracellular calcium, we found that higher calcium concentrations are associated with lowered HH pathway activity and upregulation of suppressor of fused (SUFU) which negatively regulates the SHH pathway. ChIP assays, and in vivo mouse models, show that ΔNp63α, a crucial regulator of epidermal development, binds and activates the SUFU promoter in differentiating keratinocytes. Increasing SUFU levels prevent transactivation of the bcl-2 promoter. In vitro SUFU knockdown along with in vivo SUFU+/− murine models demonstrate a significant upregulation of bcl-2 expression. ^ In conclusion, the spatial and temporal expression of bcl-2 during keratinocyte differentiation in the epidermis is a complex process requiring cooperative interactions of specific signaling cascades and transcription factors. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the endometrium, hormonal effects on epithelial cells are often elicited through stromal hormone receptors via unknown paracrine mechanisms. Several lines of evidence support the hypothesis that Wnts participate in stromal-epithelial cell communication and thus mediate hormone action. Characterization of specific Wnt signaling components in the endometrium was performed using cellular localization studies and evaluating hormone effects in a rat model. Wnt7a was expressed in the luminal epithelium, whereas the extracellular Wnt modulator, SFRP4, was localized to the endometrial stroma. SFRP4 expression is significantly decreased in endometrial carcinoma and aberrant Wnt7a signaling has been shown to cause uterine defects and contribute to the onset of disease. The specific Fzds and SFRPs that bind Wnt7a and the particular signal transduction pathway each Wnt7a-Fzd pair activates have not been identified. Additionally, the function of Wnt7a and SFRP4 in the endometrium has not been addressed. A survey of all Wnt signaling proteins expressed in the endometrium was conducted and Fzd5 and Fzd10 were identified as two receptors capable of transducing the Wnt7a signal. Biologically active recombinant Wnt7a and SFRP4 proteins were purified for quantitative biochemical studies. In Ishikawa cells, Wnt7a binding to Fzd5 activated β-catenin/canonical Wnt signaling and increased cellular proliferation. Wnt7a signaling mediated by Fzd10 induced a non-canonical/JNK-responsive pathway. SFRP4 suppressed Wnt7a action in both an autocrine and paracrine manner. Treatment with SFRP4 protein and overexpression of SFRP4 inhibited endometrial cancer cell growth and induced apoptosis in vitro. A split-eGFP complementation assay was developed to visually detect Wnt7a-Fzd interactions and subsequent pathway activation in cells. By employing a unique ELISA-based protein-protein binding technique, it was demonstrated that Wnt7a binds to SFRP4 and Fzd5 with equal nanomolar affinity. The development of these novel biological tools could lead to a better understanding of Wnt-protein interactions and the identification of new modulators of Wnt signaling. This study supports a mechanism by which the nature of the Wnt7a signal in the endometrium is dependent upon the Fzd repertoire of the cell and can be regulated by SFRP4. The potential tumor suppressor function of SFRP4 suggests it may serve as a therapeutic target for endometrial carcinoma. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Ductal carcinoma in situ (DCIS) is the most prevalent precursor to invasive breast cancer (IBC), the second leading cause of death in women in the United States. The three most important prognostic markers for IBC are Estrogen receptor (ER), Progesterone receptor (PR) and HER2/neu. The four groups (IBC) defined as (1) ER and/or PR positive and HER2/neu negative, (2) ER and/or PR positive and HER2/neu positive (3) ER and/or PR negative and HER2/neu positive and (4) negative for all three of these receptors (Triple negative). However, they have not been well studied in DCIS. This is an exploratory study with a primary objective to examine the prevalence of ER, PR, and HER2/neu in DCIS, to explore if the defined groups of IBC occur in DCIS and to consider the biological relationship between these four groups and the proliferative activity of the tumor. A secondary goal of this study is to examine the relationship between grade and proliferative activity. Methods. Using immunohistochemistry, I have measured Ki-67, ER, PR and HER2/neu positivity for a series of cases of DCIS. Results. 20 ER and/or PR positive and HER2/neu negative (50%) with average PI of 0.05, 7 ER and/or PR positive and HER2/neu positive (17.5%) with average PI of 0.14, 10 ER and/or PR negative and HER2/neu positive (25%) with average PI of 0.18, and three triple negative (7.5%) with average PI of 0.18. ER and/or PR positive and HER2/neu positive group has the highest PI (p<0.001). Further, the ER and/or PR positive and HER2/neu positive group show a linear relationship between PI and average ER/PR positivity (R=0.6). PI increases with higher grades. Conclusion. PI appears to depend upon the average fraction of positive ER/PR tumor cells, possibly with a synergistic dependence when HER2/neu is positive. If ER/PR is negative, then both HER2/neu positive and the triple negative cases appear to cluster around an average PI that is higher than the average PI in HER2/neu negative ER/PR positive negative cases. In the triple negative tumors there must be another driver of proliferation.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The studies presented in this thesis focus on two aspects of the involvement of cyclin D1 in epithelial proliferation. Since cyclin D1 has been identified as a target for genetic alterations and deregulation in a variety of human cancers, we studied cyclin D1 expression in two experimental models of epithelial carcinogenesis. These studies provided evidence that cyclin D1 was a potential target of the activating mutation of the Ha-ras gene characteristic of the experimental protocol. In addition, evidence from two independent in vitro models suggested that cyclin D1 was indeed part of the primary cellular response to activated ras, and at least partly responsible for the increase in proliferation observed in ras-transformed cells.^ Cyclin D1 has also been described as a key regulator of the passage through the G1 phase of the cell cycle. Cyclin D1 is induced in response to mitogens in a variety of cell lines, and cells engineered to overexpress cyclin D1 show accelerated G1 transit. In order to study the involvement of cyclin D1 in epithelial cell growth and differentiation, we generated transgenic mice that constitutively overexpress cyclin D1 in stratified epithelia. These mice developed thymic hyperplasia and skin hyperproliferation, providing in vivo evidence of the potential of cyclin D1 to regulate growth of epithelial cells. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To assess the effect of deregulated Ha-ras and bcl-2, individually and in combination on epidermal keratinocyte homeostasis and during multistep skin carcinogenesis, we generated skin-specific transgenic mice and keratinocyte transfectants constitutively expressing oncogenic Ha-ras and bcl-2 proteins. The deregulated Ha-ras and bcl-2 expression contributing to homeostatic imbalances in the skin had an additive effect on the probability of tumor development. They were also cooperative in incidence, growth, and latency of tumor formation, and they exhibited synergistic cooperation in malignant transformation of benign papillomas. To explain the homeostatic imbalances by Ha-ras and bcl-2 overexpression in the skin, we investigated the three major cellular processes of proliferation, cell death, and differentiation. Epidermal expression of Bcl-2 retarded keratinocyte proliferation in the epidermis of neonatal mice compared with results for control littermates. Constitutive expression of Ha-ras increased keratinocyte proliferation, and co-expression of bcl-2 modestly suppressed the ras-mediated abnormal proliferation of neonatal keratinocytes. Bcl-2 proteins in keratinocytes protected UV-treated cells from apoptotic cell death regardless of oncogenic ras expression in both non-neoplastic neonatal epidermis and human keratinocyte cell lines. The spontaneous apoptotic index (AI) was also lower in papillomas constitutively expressing bcl-2 compared with the ones that developed in control mice. Ras-overexpressing epidermis, including that in ras/bcl-2 double transgenic mice, had abnormal differentiation patterns compared with controls. The oncogenic ras protein had alterations in both epidermal distribution and the extent of cytokeratin 14 and involucrin expression. Abnormal expression of the hyperproliferation marker cytokeratin 6 and modest down regulation of cytokeratin 1 were also detected. Late appearance of filaggrin was another abnormal phenotype of the ras-expressing epidermis. Overexpression of bcl-2 had no effect on epidermal differentiation. Together, these findings suggest that constitutive expression of oncogenic Ha-ras and bcl-2 are important determinants of epidermal proliferation, viability and differentiation. In summary, our results demonstrated that the disruption of epidermal homeostasis by overexpressed ras and bcl-2 predisposes to hyperplastic growth of the epidermis and to papilloma development and that these proteins with distinct mechanisms for oncogenesis are functionally synergistic for malignant transformation of chemically induced skin carcinogenesis. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data contain source data for Figure 5c from Schilling et al., 2009. Cell fate decisions are regulated by the coordinated activation of signalling pathways such as the extracellular signal-regulated kinase (ERK) cascade, but contributions of individual kinase isoforms are mostly unknown. The authors combined quantitative data from erythropoietin-induced pathway activation in primary erythroid progenitor (colony-forming unit erythroid stage, CFU-E) cells with mathematical modelling, in order to predict and experimentally confirmed a distributive ERK phosphorylation mechanism in CFU-E cells. The authors found evidences that double-phosphorylated ERK1 attenuates proliferation beyond a certain activation level, whereas activated ERK2 enhances proliferation with saturation kinetics. Retrovirally transduced CFU-E cells were incubated with increasing Epo concentrations for 14 h and proliferation was measured by [3H]-thymidine incorporation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a deterministic continuous model of proliferative cell activity. The classical series of connected compartments is revisited along with a simple mathematical treatment of two hypotheses: constant transit times and harmonic Ts. Several examples are presented to support these ideas, both taken from previous literature and recent experiences with the fish Carassius auratus, developed at the Junta de Energía Nuclear, Madrid, Spain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Pru p 3 is the major peach allergen and the most frequent cause of food allergy in adults in the Mediterranean area. Although its allergenicity is well characterized, its ability to generate a T-cell response is not completely known. OBJECTIVE: To investigate the influence of Pru p 3 allergen on dendritic cell (DC) maturation and specific T-cell response (T(H)1/T(H)2) in peach allergic patients. METHODS: Peach allergic patients (n = 11) and tolerant controls (n = 14) were included in the study. Monocyte-derived DC maturation after incubation with Pru p 3 was evaluated by the increase of maturational markers (CD80, CD86, and CD83) by flow cytometry. Lymphocyte proliferation was evaluated by coculturing monocyte-derived DCs and 5,6-carboxyfluorescein diacetate N-succinimidyl ester-stained lymphocytes with different concentrations of Pru p 3 (25, 10, and 1 ?g/mL) by flow cytometry and cytokine production. RESULTS: Pru p 3 induced a significant increase in the CD80, CD86, and CD83 expression on stimulated DCs from patients compared with controls. The lymphocyte proliferative response after Pru p 3 stimulation was also significantly higher along with an increase in interleukin 8 in patients compared with tolerant controls. CONCLUSION: Pru p 3 allergen induces changes in DC maturational status mainly in peach allergic patients. An increase in lymphocyte proliferative response accompanied with a different cytokine pattern was also observed compared with healthy controls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Restenosis continues to be a major problem limiting the effectiveness of revascularization procedures. To date, the roles of heterotrimeric G proteins in the triggering of pathological vascular smooth muscle (VSM) cell proliferation have not been elucidated. βγ subunits of heterotrimeric G proteins (Gβγ) are known to activate mitogen-activated protein (MAP) kinases after stimulation of certain G protein-coupled receptors; however, their relevance in VSM mitogenesis in vitro or in vivo is not known. Using adenoviral-mediated transfer of a transgene encoding a peptide inhibitor of Gβγ signaling (βARKct), we evaluated the role of Gβγ in MAP kinase activation and proliferation in response to several mitogens, including serum, in cultured rat VSM cells. Our results include the striking finding that serum-induced proliferation of VSM cells in vitro is mediated largely via Gβγ. Furthermore, we studied the effects of in vivo adenoviral-mediated βARKct gene transfer on VSM intimal hyperplasia in a rat carotid artery restenosis model. Our in vivo results demonstrated that the presence of the βARKct in injured rat carotid arteries significantly reduced VSM intimal hyperplasia by 70%. Thus, Gβγ plays a critical role in physiological VSM proliferation, and targeted Gβγ inhibition represents a novel approach for the treatment of pathological conditions such as restenosis.