509 resultados para Histocompatibility.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Initial studies suggested that major histocompatibility complex class I-restricted viral epitopes could be predicted by the presence of particular residues termed anchors. However, recent studies showed that nonanchor positions of the epitopes are also significant for class I binding and recognition by cytotoxic T lymphocytes (CTLs). We investigated if changing nonanchor amino acids could increase class I affinity, complex stability, and T-cell recognition of a natural viral epitope. This concept was tested by using the HLA-A 0201-restricted human immunodeficiency virus type 1 epitope from reverse transcriptase (pol). Position 1 (P1) amino acid substitutions were emphasized because P1 alterations may not alter the T-cell receptor interaction. The peptide with the P1 substitution of tyrosine for isoleucine (I1Y) showed a binding affinity for HLA-A 0201 similar to that of the wild-type pol peptide in a cell lysate assembly assay. Surprisingly, I1Y significantly increased the HLA-A 0201-peptide complex stability at the cell surface. I1Y sensitized HLA-A 0201-expressing target cells for wild-type pol-specific CTL lysis as well as wild-type pol. Peripheral blood lymphocytes from three HLA-A2 HIV-seropositive individuals were stimulated in vitro with I1Y and wild-type pol. I1Y stimulated a higher wild-type pol-specific CTL response than wild-type pol in all three donors. Thus, I1Y may be an "improved" epitope for use as a CTL-based human immunodeficiency virus vaccine component. The design of improved epitopes has important ramifications for prophylaxis and therapeutic vaccine development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the tumor-bearing host, T cells invariably fail to induce a clinically significant antitumor immune response. Although model systems support the existence of tumor peptide antigens, the molecular interactions critical for antigen presentation by the tumor cell remain unresolved. Here, we demonstrate that human follicular lymphoma cells are highly inefficient at presenting alloantigen despite their strong expression of major histocompatibility complex and low-to-intermediate expression of some adhesion and B7 costimulatory molecules. Activation of follicular lymphoma cells via CD40 induces or up-regulates both adhesion and B7 costimulatory molecules essential to repair this defect. More importantly, once primed, alloreactive T cells efficiently recognize unstimulated follicular lymphoma cells. Thus, correction of defective tumor immunity requires not only expression of major histocompatibility complex but also sufficient expression of multiple adhesion and costimulatory molecules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The invariant chain (Ii) prevents binding of ligands to major histocompatibility complex (MHC) class II molecules in the endoplasmic reticulum and during intracellular transport. Stepwise removal of the Ii in a trans-Golgi compartment renders MHC class II molecules accessible for peptide loading, with CLIP (class II-associated Ii peptides) as the final fragment to be released. Here we show that CLIP can be subdivided into distinct functional regions. The C-terminal segment (residues 92-105) of the CLIP-(81-105) fragment mediates inhibition of self- and antigenic peptide binding to HLA-DR2 molecules. In contrast, the N-terminal segment CLIP-(81-98) binds to the Staphylococcus aureus enterotoxin B contact site outside the peptide-binding groove on the alpha 1 domain and does not interfere with peptide binding. Its functional significance appears to lie in the contribution to CLIP removal: the dissociation of CLIP-(81-105) is characterized by a fast off-rate, which is accelerated at endosomal pH, whereas in the absence of the N-terminal CLIP-(81-91), the off-rate of C-terminal CLIP-(92-105) is slow and remains unaltered at low pH. Mechanistically, the N-terminal segment of CLIP seems to prevent tight interactions of CLIP side chains with specificity pockets in the peptide-binding groove that normally occurs during maturation of long-lived class II-peptide complexes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present an analysis that synthesizes information on the sequence, structure, and motifs of antigenic peptides, which previously appeared to be in conflict. Fourier analysis of T-cell antigenic peptides indicates a periodic variation in amino acid polarities of 3-3.6 residues per period, suggesting an amphipathic alpha-helical structure. However, the diffraction patterns of major histocompatibility complex (MHC) molecules indicate that their ligands are in an extended non-alpha-helical conformation. We present two mutually consistent structural explanations for the source of the alpha-helical periodicity, based on an observation that the side chains of MHC-bound peptides generally partition with hydrophobic (hydrophilic) side chains pointing into (out of) the cleft. First, an analysis of haplotype-dependent peptide motifs indicates that the locations of their defining residues tend to force a period 3-4 variation in hydrophobicity along the peptide sequence, in a manner consistent with the spacing of pockets in the MHC. Second, recent crystallographic determination of the structure of a peptide bound to a class II MHC molecule reveals an extended but regularly twisted peptide with a rotation angle of about 130 degrees. We show that similar structures with rotation angles of 100-130 degrees are energetically acceptable and also span the length of the MHC cleft. These results provide a sound physical chemical and structural basis for the existence of a haplotype-independent antigenic motif which can be particularly important in limiting the search time for antigenic peptides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cytokines interleukin (IL) 4 and IL-13 induce many of the same biological responses, including class switching to IgE and induction of major histocompatibility complex class II antigens and CD23 on human B cells. It has recently been shown that IL-4 induces the tyrosine phosphorylation of a 170-kDa protein, a substrate called 4PS, and of the Janus kinase (JAK) family members JAK1 and JAK3. Because IL-13 has many functional effects similar to those of IL-4, we compared the ability of IL-4 and IL-13 to activate these signaling molecules in the human multifactor-dependent cell line TF-1. In this report we demonstrate that both IL-4 and IL-13 induced the tyrosine phosphorylation of 4PS and JAK1. Interestingly, although IL-4 induced the tyrosine phosphorylation of JAK3, we did not detect JAK3 phosphorylation in response to IL-13. These data suggest that IL-4 and IL-13 signal in similar ways via the activation of JAK1 and 4PS. However, our data further indicate that there are significant differences because IL-13 does not activate JAK3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To generate a potent cell-mediated immune response, at least two signals are required by T cells. One is engagement of the T-cell receptor with peptide-bearing major histocompatibility complex molecules. The other signal can be delivered by various molecules on the antigen-presenting cell, such as B7-1 (CD80). Many tumor cells escape immune recognition by failing to express these costimulatory molecules. Transfection of the B7 gene into some murine tumor cells allows for immune recognition and subsequent rejection of the parental tumor. We have studied an alternative approach for the introduction of B7-1 onto the surface of tumor cells. This method involves purified glycosyl-phosphatidylinositol (GPI)-anchored proteins which can spontaneously incorporate their lipid tail into cell membranes. We have created and purified a GPI-anchored B7-1 molecule (called GPI-B7) which is able to bind its cognate ligand, CD28, and incorporate itself into tumor cell membranes after a short incubation. Tumor cells that have been reconstituted with GPI-B7 can provide the costimulatory signal needed to stimulate T cells. These findings suggest an approach for the introduction of new proteins onto cell membranes to create an effective tumor vaccine for potential use in human immunotherapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human melanoma cells can process the MAGE-1 gene product and present the processed nonapeptide EADPTGHSY on their major histocompatibility complex class I molecules, HLA-A1, as a determinant for cytolytic T lymphocytes (CTLs). Considering that autologous antigen presenting cells (APCs) pulsed with the synthetic nonapeptide might, therefore, be immunogenic, melanoma patients whose tumor cells express the MAGE-1 gene and who are HLA-A1+ were immunized with a vaccine made of cultured autologous APCs pulsed with the synthetic nonapeptide. Analyses of the nature of the in vivo host immune response to the vaccine revealed that the peptide-pulsed APCs are capable of inducing autologous melanoma-reactive and the nonapeptide-specific CTLs in situ at the immunization site and at distant metastatic disease sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We screened a panel of monoclonal antibodies against selected macrophage cell surface molecules for their ability to inhibit enterotoxin binding to major histocompatibility complex class II-negative C2D (H-2b) macrophages. Two monoclonal antibodies, HB36 and TIB126, that are specific for the alpha 2 domain of major histocompatibility complex class I, blocked staphylococcal enterotoxins A and B (SEA and SEB, respectively) binding to C2D macrophages in a specific and concentration-dependent manner. Inhibitory activities were haplotype-specific in that SEA and SEB binding to H-2k or H-2d macrophages was not inhibited by either monoclonal antibody. HB36, but not TIB126, inhibited enterotoxin-induced secretion of cytokines by H-2b macrophages. Lastly, passive protection of D-galactosamine-sensitized C2D mice by injection with HB36 antibody prevented SEB-induced death. Therefore, SEA and SEB binding to the alpha 2 domain of the H-2Db molecule induces biological activity and has physiological consequences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A PCR-based assay has been devised for the detection and semiquantitation of cells originating from a few donor hematopoietic stem cells (HSCs) in a background of recipient cells. Upon sequencing a segment of murine Y chromosome contained in the plasmid pY2, oligonucleotide primers were designed for specific amplification of the Y chromosome-restricted segment. The HSCs were isolated from the bone marrow of mice on day 4 following a single i.v. injection of 5-fluorouracil and were readily distinguished from other bone marrow elements by the characteristics of low density, absence of lineage-specific surface markers, lack of expression of transferrin receptor, and a high expression of major histocompatibility complex class I antigen. Injection of as few as four such HSCs was shown to produce donor-derived cells (including lymphoid cells) for at least 8 months after transplantation into syngeneic female recipients. Retransplantation, employing 10(6) bone marrow cells from the initial recipients, also yielded clear evidence of repopulation with detectable levels of male donor cells. On statistical grounds, it is clear that long-term repopulation in vivo may result from even a single HSC having the characteristics defined herein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although T cells bearing gamma delta T-cell receptors have long been known to be present in the epithelial lining of many organs, their specificity and function remain elusive. In the present study, we examined the intestinal epithelia of T-cell-receptor mutant mice, which were deficient in either gamma delta T cells or alpha beta T cells, and of normal littermates. The absence of gamma delta T cells was associated with a reduction in epithelial cell turnover and a downregulation of the expression of major histocompatibility complex class II molecules. No such effects were observed in alpha beta T-cell-deficient mice. These findings indicate that intraepithelial gamma delta T cells regulate the generation and differentiation of intestinal epithelial cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To determine whether T-cell-receptor (TCR) usage by T cells recognizing a defined human tumor antigen in the context of the same HLA molecule is conserved, we analyzed the TCR diversity of autologous HLA-A2-restricted cytotoxic T-lymphocyte (CTL) clones derived from five patients with metastatic melanoma and specific for the common melanoma antigen Melan-A/MART-1. These clones were first identified among HLA-A2-restricted anti-melanoma CTL clones by their ability to specifically release tumor necrosis factor in response to HLA-A2.1+ COS-7 cells expressing this tumor antigen. A PCR with variable (V)-region gene subfamily-specific primers was performed on cDNA from each clone followed by DNA sequencing. TCRAV2S1 was the predominant alpha-chain V region, being transcribed in 6 out of 9 Melan-A/MART-1-specific CTL clones obtained from the five patients. beta-chain V-region usage was also restricted, with either TCRBV14 or TCRBV7 expressed by all but one clone. In addition, a conserved TCRAV2S1/TCRBV14 combination was expressed in four CTL clones from three patients. None of these V-region genes was found in a group of four HLA-A2-restricted CTL clones recognizing different antigens (e.g., tyrosinase) on the autologous tumor. TCR joining regions were heterogeneous, although conserved structural features were observed in the complementarity-determining region 3 sequences. These results indicate that a selective repertoire of TCR genes is used in anti-melanoma responses when the response is narrowed to major histocompatibility complex-restricted antigen-specific interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Listeria monocytogenes (LM) is a Gram-positive bacterium that is able to enter host cells, escape from the endocytic vesicle, multiply within the cytoplasm, and spread directly from cell to cell without encountering the extracellular milieu. The ability of LM to gain access to the host cell cytosol allows proteins secreted by the bacterium to efficiently enter the pathway for major histocompatibility complex class I antigen processing and presentation. We have established a genetic system for expression and secretion of foreign antigens by recombinant strains, based on stable site-specific integration of expression cassettes into the LM genome. The ability of LM recombinants to induce protective immunity against a heterologous pathogen was demonstrated with lymphocytic choriomeningitis virus (LCMV). LM strains expressing the entire LCMV nucleoprotein or an H-2Ld-restricted nucleoprotein epitope (aa 118-126) were constructed. Immunization of mice with LM vaccine strains conferred protection against challenge with virulent strains of LCMV that otherwise establish chronic infection in naive adult mice. In vivo depletion of CD8+ T cells from vaccinated mice abrogated their ability to clear viral infection, showing that protective anti-viral immunity was due to CD8+ T cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Odortypes--namely, body odors that distinguish one individual from another on the basis of genetic polymorphism at the major histocompatibility complex and other loci--are a fundamental element in the social life and reproductive behavior of the mouse, including familial imprinting, mate choice, and control of early pregnancy. Odortypes are strongly represented in urine. During mouse pregnancy, an outcrossed mother's urine acquires fetal major histocompatibility complex odortypes of paternal origin, an observation that we took as the focus of a search for odortypes in humans, using a fully automated computer-programmed olfactometer in which trained rats are known to distinguish precisely the odortypes of another species. Five women provided urine samples before and after birth, which in each case appropriately trained rats were found to distinguish in the olfactometer. Whether this olfactory distinction of mothers' urine before and after birth reflects in part the odortype and hence genotype of the fetus, and not just the state of pregnancy per se, was tested in a second study in which each mother's postpartum urine was mixed either with urine from her own infant or with urine of a different, same-aged infant. Responses of trained rats were more positive with respect to the former (congruous) mixtures than to the latter (incongruous) mixtures, implying that, as in the mouse, human fetal odortypes of paternal genomic origin are represented in the odortype of the mother, doubtless by circulatory transfer of the pertinent odorants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La présentation antigénique par les molécules de classe II du complexe majeur d’histocompatibilité (CMH II) est un mécanisme essentiel au contrôle des pathogènes par le système immunitaire. Le CMH II humain existe en trois isotypes, HLA-DP, DQ et DR, tous des hétérodimères composés d’une chaîne α et d’une chaîne β. Le CMH II est entre autres exprimé à la surface des cellules présentatrices d’antigènes (APCs) et des cellules épithéliales activées et a pour fonction de présenter des peptides d’origine exogène aux lymphocytes T CD4+. L’oligomérisation et le trafic intracellulaire du CMH II sont largement facilités par une chaperone, la chaîne invariante (Ii). Il s’agit d’une protéine non-polymorphique de type II. Après sa biosynthèse dans le réticulum endoplasmique (ER), Ii hétéro- ou homotrimérise, puis interagit via sa région CLIP avec le CMH II pour former un complexe αβIi. Le complexe sort du ER pour entamer son chemin vers différents compartiments et la surface cellulaire. Chez l’homme, quatre isoformes d’Ii sont répertoriées : p33, p35, p41 et p43. Les deux isoformes exprimées de manière prédominante, Iip33 et p35, diffèrent par une extension N-terminale de 16 acides aminés portée par Iip35. Cette extension présente un motif de rétention au réticulum endoplasmique (ERM) composé des résidus RXR. Ce motif doit être masqué par la chaîne β du CMH II pour permettre au complexe de quitter le ER. Notre groupe s’est intéressé au mécanisme du masquage et au mode de sortie du ER des complexes αβIi. Nous montrons ici que l’interaction directe, ou en cis, entre la chaîne β du CMH II et Iip35 dans une structure αβIi est essentielle pour sa sortie du ER, promouvant la formation de structures de haut niveau de complexité. Par ailleurs, nous démontrons que NleA, un facteur de virulence bactérien, permet d’altérer le trafic de complexes αβIi comportant Iip35. Ce phénotype est médié par l’interaction entre p35 et les sous-unités de COPII. Bref, Iip35 joue un rôle central dans la formation des complexes αβIi et leur transport hors du ER. Ceci fait d’Iip35 un régulateur clef de la présentation antigénique par le CMH II.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The intracellular stages of apicomplexan parasites are known to extensively modify their host cells to ensure their own survival. Recently, considerable progress has been made in understanding the molecular details of these parasite-dependent effects for Plasmodium-, Toxoplasma- and Theileria-infected cells. We have begun to understand how Plasmodium liver stage parasites protect their host hepatocytes from apoptosis during parasite development and how they induce an ordered cell death at the end of the liver stage. Toxoplasma parasites are also known to regulate host cell survival pathways and it has been convincingly demonstrated that they block host cell major histocompatibility complex (MHC)-dependent antigen presentation of parasite epitopes to avoid cell-mediated immune responses. Theileria parasites are the masters of host cell modulation because their presence immortalises the infected cell. It is now accepted that multiple pathways are activated to induce Theileria-dependent host cell transformation. Although it is now known that similar host cell pathways are affected by the different parasites, the outcome for the infected cell varies considerably. Improved imaging techniques and new methods to control expression of parasite and host cell proteins will help us to analyse the molecular details of parasite-dependent host cell modifications.