973 resultados para Hemilabile ligand


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Ischemia-reperfusion injury (IRI) significantly contributes to graft dysfunction after liver transplantation. Natural killer (NK) cells are crucial innate effector cells in the liver and express tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a potent inducer of hepatocyte cell death. Here, we investigated if TRAIL expression on NK cells contributes to hepatic IRI. METHODS: The outcome after partial hepatic IRI was assessed in TRAIL-null mice and contrasted to C57BL/6J wild-type mice and after NK cell adoptive transfer in RAG2/common gamma-null mice that lack T, B, and NK cells. Liver IRI was assessed by histological analysis, alanine aminotransferase, hepatic neutrophil activation by myeloperoxidase activity, and cytokine secretion at specific time points. NK cell cytotoxicity and differentiation were assessed in vivo and in vitro. RESULTS: Twenty-four hours after reperfusion, TRAIL-null mice exhibited significantly higher serum transaminases, histological signs of necrosis, neutrophil infiltration, and serum levels of interleukin-6 compared to wild-type animals. Adoptive transfer of TRAIL-null NK cells into immunodeficient RAG2/common gamma-null mice was associated with significantly elevated liver damage compared to transfer of wild-type NK cells. In TRAIL-null mice, NK cells exhibit higher cytotoxicity and decreased differentiation compared to wild-type mice. In vitro, cytotoxicity against YAC-1 and secretion of interferon gamma by TRAIL-null NK cells were significantly increased compared to wild-type controls. CONCLUSIONS: These experiments reveal that expression of TRAIL on NK cells is protective in a murine model of hepatic IRI through modulation of NK cell cytotoxicity and NK cell differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Detecting prostate cancer before spreading or predicting a favorable therapy are challenging issues for impacting patient's survival. Presently, 2-[(18) F]-fluoro-2-deoxy-D-glucose ((18) F-FDG) and/or (18) F-fluorocholine ((18) F-FCH) are the generally used PET-tracers in oncology yet do not emphasize the T877A androgen receptor (AR) mutation being exclusively present in cancerous tissue and escaping androgen deprivation treatment. METHODS We designed and synthesized fluorinated 5α-dihydrotestosterone (DHT) derivatives to target T877A-AR. We performed binding assays to select suitable candidates using COS-7 cells transfected with wild-type or T877A AR (WT-AR, T877A-AR) expressing plasmids and investigated cellular uptake of candidate (18) F-RB390. Stability, biodistribution analyses and PET-Imaging were assessed by injecting (18) F-RB390 (10MBq), with and without co-injection of an excess of unlabeled DHT in C4-2 and PC-3 tumor bearing male SCID mice (n = 12). RESULTS RB390 presented a higher relative binding affinity (RBA) (28.1%, IC50  = 32 nM) for T877A-AR than for WT-AR (1.7%, IC50  = 357 nM) related to DHT (RBA = 100%). A small fraction of (18) F-RB390 was metabolized when incubated with murine liver homogenate or human blood for 3 hr. The metabolite of RB390, 3-hydroxysteroid RB448, presented similar binding characteristics as RB390. (18) F-RB390 but not (18) F-FDG or (18) F-FCH accumulated 2.5× more in COS-7 cells transfected with pSG5AR-T877A than with control plasmid. Accumulation was reduced with an excess of DHT. PET/CT imaging and biodistribution studies revealed a significantly higher uptake of (18) F-RB390 in T877A mutation positive xenografts compared to PC-3 control tumors. This effect was blunted with DHT. CONCLUSION Given the differential binding capacity and the favorable radioactivity pattern, (18) F-RB390 represents the portrayal of the first imaging ligand with predictive potential for mutant T877A-AR in prostate cancer for guiding therapy. Prostate 75:348-359, 2015. © 2014 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ligand 1,2-bis(1H-benzimidazol-2-yl)-1,2-ethanediol, 1, and its methylated derivative 2 are readily synthesized from tartaric acid, and act as chiral, facially coordinating tridentate ligands, forming complexes of composition ML2 with octahedral transition metals. The copper(II) complexes show distorted 4 + 2 coordination with benzimidazoles occupying the equatorial sites and alcohol functions weakly binding in the axial sites. Nickel(II) complexes in three different states of protonation show regular octahedral geometry with the alcohols mutually cis. Deprotonation of the coordinated alcohol produces little structural change but the monodeprotonated complex forms a hydrogen bonded dimer. Magnetic measurements show the hydrogen bonded bridge to offer a pathway for weak antiferromagnetic coupling. UV-Visible spectroscopy shows the ligand to have a field intermediate between water and pyridine. The diastereoselectivity of complexation depends on the geometry: nickel(II) shows a weak preference for the homochiral complex, whereas copper(II) forms almost exclusively homochiral complexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various corphinoid model systems bearing a methyl group at the position C-20 have been found to undergo regioselective chemical -methylation at the ligand periphery, mimicking enzymic -methylation occurring in vitamin-B biosynthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eph family receptor tyrosine kinases signal axonal guidance, neuronal bundling, and angiogenesis; yet the signaling systems that couple these receptors to targeting and cell-cell assembly responses are incompletely defined. Functional links to regulators of cytoskeletal structure are anticipated based on receptor mediated cell-cell aggregation and migratory responses. We used two-hybrid interaction cloning to identify EphB1-interactive proteins. Six independent cDNAs encoding the SH2 domain of the adapter protein, Nck, were recovered in a screen of a murine embryonic library. We mapped the EphB1 subdomain that binds Nck and its Drosophila homologue, DOCK, to the juxtamembrane region. Within this subdomain, Tyr594 was required for Nck binding. In P19 embryonal carcinoma cells, activation of EphB1 (ELK) by its ligand, ephrin-B1/Fc, recruited Nck to native receptor complexes and activated c-Jun kinase (JNK/SAPK). Transient overexpression of mutant EphB1 receptors (Y594F) blocked Nck recruitment to EphB1, attenuated downstream JNK activation, and blocked cell attachment responses. These findings identify Nck as an important intermediary linking EphB1 signaling to JNK.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A bitopic ligand, 4-(3,5-dimethylpyrazol-4-yl)-1,2,4-triazole (Hpz-tr) (1), containing two different heterocyclic moieties was employed for the design of copper(II)–molybdate solids under hydrothermal conditions. In the multicomponent CuII/Hpz-tr/MoVI system, a diverse set of coordination hybrids, [Cu(Hpz-tr)2SO4]·3H2O (2), [Cu(Hpz-tr)Mo3O10] (3), [Cu4(OH)4(Hpz-tr)4Mo8O26]·6H2O (4), [Cu(Hpz-tr)2Mo4O13] (5), and [Mo2O6(Hpz-tr)]·H2O (6), was prepared and characterized. A systematic investigation of these systems in the form of a ternary crystallization diagram approach was utilized to show the influence of the molar ratios of starting reagents, the metal (CuII and MoVI) sources, the temperature, etc., on the reaction products outcome. Complexes 2–4 dominate throughout a wide crystallization range of the composition triangle, while the other two compounds 5 and 6 crystallize as minor phases in a narrow concentration range. In the crystal structures of 2–6, the organic ligand behaves as a short [N–N]-triazole linker between metal centers Cu···Cu in 2–4, Cu···Mo in 5, and Mo···Mo in 6, while the pyrazolyl function remains uncoordinated. This is the reason for the exceptional formation of low-dimensional coordination motifs: 1D for 2, 4, and 6 and 2D for 3 and 5. In all cases, the pyrazolyl group is involved in H bonding (H-donor/H-acceptor) and is responsible for π–π stacking, thus connecting the chain and layer structures in more complicated H-bonding architectures. These compounds possess moderate thermal stability up to 250–300 °C. The magnetic measurements were performed for 2–4, revealing in all three cases antiferromagnetic exchange interactions between neighboring CuII centers and long-range order with a net moment below Tc of 13 K for compound 4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herein, we report the discovery of the first potent and selective inhibitor of TRPV6, a calcium channel overexpressed in breast and prostate cancer, and its use to test the effect of blocking TRPV6-mediated Ca2+-influx on cell growth. The inhibitor was discovered through a computational method, xLOS, a 3D-shape and pharmacophore similarity algorithm, a type of ligand-based virtual screening (LBVS) method described briefly here. Starting with a single weakly active seed molecule, two successive rounds of LBVS followed by optimization by chemical synthesis led to a selective molecule with 0.3 μM inhibition of TRPV6. The ability of xLOS to identify different scaffolds early in LBVS was essential to success. The xLOS method may be generally useful to develop tool compounds for poorly characterized targets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Peptide transporters are membrane proteins that mediate the cellular uptake of di- and tripeptides, and of peptidomimetic drugs such as β-lactam antibiotics, antiviral drugs and antineoplastic agents. In spite of their high physiological and pharmaceutical importance, the molecular recognition by these transporters of the amino acid side chains of short peptides and thus the mechanisms for substrate binding and specificity are far from being understood. RESULTS The X-ray crystal structure of the peptide transporter YePEPT from the bacterium Yersinia enterocolitica together with functional studies have unveiled the molecular bases for recognition, binding and specificity of dipeptides with a charged amino acid residue at the N-terminal position. In wild-type YePEPT, the significant specificity for the dipeptides Asp-Ala and Glu-Ala is defined by electrostatic interaction between the in the structure identified positively charged Lys314 and the negatively charged amino acid side chain of these dipeptides. Mutagenesis of Lys314 into the negatively charged residue Glu allowed tuning of the substrate specificity of YePEPT for the positively charged dipeptide Lys-Ala. Importantly, molecular insights acquired from the prokaryotic peptide transporter YePEPT combined with mutagenesis and functional uptake studies with human PEPT1 expressed in Xenopus oocytes also allowed tuning of human PEPT1's substrate specificity, thus improving our understanding of substrate recognition and specificity of this physiologically and pharmaceutically important peptide transporter. CONCLUSION This study provides the molecular bases for recognition, binding and specificity of peptide transporters for dipeptides with a charged amino acid residue at the N-terminal position.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND & AIMS The interaction of KIR with their HLA ligands drives the activation and inhibition of natural killer (NK) cells. NK cells could be implicated in the development of liver fibrosis in chronic hepatitis C. METHODS We analysed 206 non-transplanted and 53 liver transplanted patients, selected according to their Metavir fibrosis stage. Several variables such as the number of activator KIR or the HLA ligands were considered in multinomial and logistic regression models. Possible confounding variables were also investigated. RESULTS The KIRs were not significant predictors of the fibrosis stage. Conversely, a significant reduction of the HLA-C1C2 genotype was observed in the most advanced fibrosis stage group (F4) in both cohorts. Furthermore, the progression rate of fibrosis was almost 10 times faster in the subgroup of patients after liver transplantation and HLA-C1C2 was significantly reduced in this cohort compared to non-transplanted patients. CONCLUSION This study suggests a possible role of KIR and their ligands in the development of liver damage. The absence of C1 and C2 ligands heterozygosity could lead to less inhibition of NK cells and a quicker progression to a high level of fibrosis in patients infected by HCV, especially following liver transplantation. This article is protected by copyright. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Skin cancer is the most common malignancy in humans. Although highly treatable, non-melanoma skin cancer is commonly followed by other non-cutaneous malignancies. Ultraviolet radiation (UVR) acts as both tumor initiator and promoter, and also results in the suppression of specific immune responses. The systemic suppression of immune responses is initiated by DNA damage, which promotes IL-10 production, an important cytokine as anti-IL-10 can abrogate the suppression, and upregulates the pro-apoptotic proteins Fas and Fas ligand (FasL). FasL is a critical factor for UV-induced immune suppression, and the suppressor cell induced by UV expresses FasL. ^ We hypothesized that the microenvironment affects Fas/FasL interactions, and that these interactions are important to the phenomenon of UV induced immune suppression. To determine the effects of the interaction of FasL and IL-10, splenocytes isolated from C57Bl/6 mice were cultured in the presence or absence of IL-10 post-mitogenic activation. We determined that IL-10 protects from Fas-mediated apoptosis by lowering Fas sensitivity and lowering the levels of either Fas or FasL. This protection is stronger when IL-10 is given immediately after mitogenic activation, and does not increase any of the inhibitors of apoptosis studied. In vivo, splenocytes from UV-irradiated mice are resistant to Fas-mediated apoptosis and present very high levels of IL-10, lowered Fas sensitivity and lowered caspase cleavage despite higher expression of Fas and FasL than non-irradiated mice. ^ UV-induced immune suppression affects female mice preferentially, which led us to look at prolactin as a possible component of this suppression since this hormone has also been associated with increased skin carcinogenesis. The interaction of FasL and prolactin results in suppression of the delayed type hypersensitivity response to Candida albicans. This lack of response depends on FasL as is not seen in gld mice. Similar to UV-induced immune suppression, the suppression is caused by a Th2 deviation, and correlates with a significant increase in Fas expression. In the presence of UV, the effects of prolactin seemed to be protective, and UV actually restores the DTH response.^ Taken together, these observations suggest that the microenvironment dictates the outcome of the interaction of FasL with Fas going from promoting apoptosis to preventing apoptosis or mediating a Th2 deviation and suppression of a Th1 response. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exposure to UVB radiation induces local and systemic immune suppression, evidenced by inhibition of the contact hypersensitivity response (CHS). Epidermal dendritic cells, the primary antigen presenting cells responsible for the induction of CHS, are profoundly altered in phenotype and function by UVB exposure and possess UV-specific DNA damage upon migrating to skin-draining lymph nodes. Expression of the proapoptotic protein FasL has been demonstrated in both skin and lymph node cells following UVB exposure. Additionally, functional FasL expression has recently been demonstrated to be required in the phenomenon of UV-induced immune suppression. To test the hypothesis that FasL expression by DNA-damaged Langerhans cells migrating to the skin-draining lymph nodes is a crucial event in the generation of this phenomenon, mice were given a single 5KJ/m2 UV-B exposure and sensitized to 0.5% FITC through the exposed area. Dendritic cells (DC) harvested from skin-draining lymph nodes (DLN) 18 hours following sensitization by magnetic CD11c-conjugated microbeads expressed high levels of Iab, CD80 and CD86, DEC-205 and bore the FITC hapten, suggesting epidermal origin. Radioimmunoassay of UV-specific DNA damage showed that DC contained the vast majority of cyclobutane pyrimidine dimers (CPDs) found in the DLN after UVB and exhibited increased FasL mRNA expression, a result which correlated with greatly increased FasL-mediated cytotoxicity. The ability of DCs to transfer sensitization to naïve hosts was lost following UVB exposure, a phenomenon which required DC FasL expression, and was completely reversed by cutaneous DNA repair. Collectively, these results demonstrate the central importance of DNA damage-induced FasL expression on migrating dendritic cells in mediating UV-induced suppression of contact hypersensitivity. ^