932 resultados para Heat pump, Solar Energy, Ambient Energy, Evaporator Collector, Collector Efficiency
Resumo:
The observed changes in physical properties of sea ice such as decreased thickness and increased melt pond cover severely impact the energy budget of Arctic sea ice. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role for amount and timing of sea-ice-melt and under-ice primary production. Recent developments in underwater technology provide new opportunities to study light transmission below the largely inaccessible underside of sea ice. We measured spectral under-ice radiance and irradiance using the new Nereid Under-Ice (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H-ROV) designed for both remotely piloted and autonomous surveys underneath land-fast and moving sea ice. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under-ice optical measurements with three dimensional under-ice topography (multibeam sonar) and aerial images of the surface conditions. We investigate the influence of spatially varying ice-thickness and surface properties on the spatial variability of light transmittance during summer. Our results show that surface properties such as melt ponds dominate the spatial distribution of the under-ice light field on small scales (<1000 m**2), while sea ice-thickness is the most important predictor for light transmission on larger scales. In addition, we propose the use of an algorithm to obtain histograms of light transmission from distributions of sea ice thickness and surface albedo.
Resumo:
Despite continuous efforts to improve the coverage, the access to electricity remains insufficient in many developing countries, particularly in geographically challenged locations, due mostly to the high cost of grid extension. To rigorously investigate the effectiveness of solar products as an alternative in remote areas, we conducted a randomized controlled trial in river islands of northern Bangladesh where no grid-based electricity is available. We found that solar lanterns significantly increased home study hours among schooled children, especially in the night and before exams. School attendance rate also initially increases due to the provision of solar lamps, although such effects fade away over time. The increased study time and initial school attendance rate, however, did not improve children's exam results. We also found marginal improvements on health-related indicators, such as eye redness and irritation, but negligible impacts on respiratory indicators. Households that received solar lanterns substituted the traditional lighting sources with modern technology, leading to a significant decrease in annual biomass fuel consumptions, particularly kerosene. Finally, treated households showed a greater self-reported willingness to purchase solar products compared with the control group.
Resumo:
In this paper, a numerical study is made of simple bi-periodic binary diffraction gratings for solar cell applications. The gratings consist of hexagonal arrays of elliptical towers and wells etched directly into the solar cell substrate. The gratings are applied to two distinct solar cell technologies: a quantum dot intermediate band solar cell (QD-IBSC) and a crystalline silicon solar cell (SSC). In each case, the expected photocurrent increase due to the presence of the grating is calculated assuming AM1.5D illumination. For each technology, the grating period, well/tower depth and well/tower radii are optimised to maximise the photocurrent. The optimum parameters are presented. Results are presented for QD-IBSCs with a range of quantum dot layers and for SSCs with a range of thicknesses. For the QD-IBSC, it is found that the optimised grating leads to an absorption enhancement above that calculated for an ideally Lambertian scatterer for cells with less than 70 quantum dot layers. In a QD-IBSC with 50 quantum dot layers equipped with the optimum grating, the weak intermediate band to conduction band transition absorbs roughly half the photons in the corresponding sub-range of the AM1.5D spectrum. For the SSC, it is found that the optimised grating leads to an absorption enhancement above that calculated for an ideally Lambertian scatterer for cells with thicknesses of 10 ?m or greater. A 20um thick SSC equipped with the optimised grating leads to an absorption enhancement above that of a 200um thick SSC equipped with a planar back reflector.
Resumo:
This article analyses the long-term performance of collective off-grid photovoltaic (PV) systems in rural areas. The use of collective PV systems for the electrification of small medium-size villages in developing countries has increased in the recent years. They are basically set up as stand-alone installations (diesel hybrid or pure PV) with no connection with other electrical grids. Their particular conditions (isolated) and usual installation places (far from commercial/industrial centers) require an autonomous and reliable technology. Different but related factors affect their performance and the energy supply; some of them are strictly technical but others depend on external issues like the solar energy resource and users’ energy and power consumption. The work presented is based on field operation of twelve collective PV installations supplying the electricity to off-grid villages located in the province of Jujuy, Argentina. Five of them have PV generators as unique power source while other seven include the support of diesel groups. Load demand evolution, energy productivity and fuel consumption are analyzed. Besides, energy generation strategies (PV/diesel) are also discussed.
Resumo:
Nowadays, efficiency improvement of solar cells is one of the most important issues in photovoltaic systems and CdTe is one of the most promising thin film photovoltaic materials we can found. CdTe reported efficiencies in solar energy conversion have been as good as that found in polycrystalline Si thin film cell [1], besides CdTe can be easily produced at industrial scale.
Resumo:
This paper has analysed the effect of the utilization of internal finned tubes for the design of parabolic trough collectors with computational fluid dynamics tools. Our numerical approach has been qualified with the computational estimation of reported experimental data regarding phenomena involved in finned tube applications and solar irradiation of parabolic trough collector. The application of finned tubes to the design of parabolic trough collectors must take into account features as the pressure losses, thermal losses and thermo-mechanical stress and thermal fatigue. Our analysis shows an improvement potential in parabolic trough solar plants efficiency by the application of internal finned tubes.
Resumo:
Mechanical stability of EWT solar cells deteriorates when holes are created in the wafer. Nevertheless, the chemical etching after the hole generation process improves the mechanical strength by removing part of the damage produced in the drilling process. Several sets of wafers with alkaline baths of different duration have been prepared. The mechanical strength has been measured by the ring on ring bending test and the failure stresses have been obtained through a FE simulation of the test. This paper shows the comparison of these groups of wafers in order to obtain an optimum value of the decreased thickness produced by the chemical etching
Resumo:
EWT solar cells start from drilled wafers with approximately 100 holes/cm2. These holes act as stress concentrators leading to a reduction in the mechanical strength of this type of wafers. The viability of cells with higher density of holes has been studied. To this end, sets of wafers with different density of holes have been characterized. The ring on ring test has been employed and FE models have been developed to simulate the test. The statistical evaluation permits to draw conclusions about the reduction of the strength depending on the density of holes. Moreover, the stress concentration around the holes has been studied by means of the FE method employing the sub-modeling technique. The maximum principal stress of EWT wafers with twice the density of holes of commercial ones is almost the same. However, the mutual interaction between the stress concentration effects around neighboring holes is only observed for wafers with a density of 200 holes/cm2
Resumo:
In Brazil, a low-latitude country characterized by its high availability and uniformity of solar radiation, the use of PV solar energy integrated in buildings is still incipient. However, at the moment there are several initiatives which give some hints that lead to think that there will be a change shortly. In countries where this technology is already a daily reality, such as Germany, Japan or Spain, the recommendations and basic criteria to avoid losses due to orientation and tilt are widespread. Extrapolating those measures used in high latitudes to all regions, without a previous deeper analysis, is standard practice. They do not always correspond to reality, what frequently leads to false assumptions and may become an obstacle in a country which is taking the first step in this area. In this paper, the solar potential yield for different surfaces in Brazilian cities (located at latitudes between 0° and 30°S) are analyzed with the aim of providing the necessary tools to evaluate the suitability of the buildings’ envelopes for photovoltaic use
Resumo:
Photovoltaic modules based on thin film technology are gaining importance in the photovoltaic market, and module installers and plant owners have increasingly begun to request methods of performing module quality control. These modules pose additional problems for measuring power under standard test conditions (STC), beyond problems caused by the temperature of the module and the ambient variables. The main difficulty is that the modules’ power rates may vary depending both on the amount of time they have been exposed to the sun during recent hours and on their history of sunlight exposure. In order to assess the current state of the module, it is necessary to know its sunlight exposure history. Thus, an easily accomplishable testing method that ensures the repeatability of the measurements of the power generated is needed. This paper examines different tests performed on commercial thin film PV modules of CIS, a-Si and CdTe technologies in order to find the best way to obtain measurements. A method for obtaining indoor measurements of these technologies that takes into account periods of sunlight exposure is proposed. Special attention is paid to CdTe as a fast growing technology in the market.
Resumo:
The use of photovoltaic experimental plants in engineering educational buildings contributes to an increase in acceptance of this technology by future engineers. There are some photovoltaic (PV) systems in educational buildings in Spain, but they are usually limited to buildings in relation to electrical technologies or research areas. They are not common in other educational or official buildings. This paper presents the project of a grid-connected solar plant with two main objectives. First, different PV module technologies will be compared. Second, an emphasis on agronomical areas in educational settings will be reviewed in an attempt to facilitate student engagement in the use of the power plant. The system is grid-connected in order to pay-back the investment in the plant. In fact the electricity generated by the plant will be used by the installations of the building, as it is the closest consumer. This work intends to approximate photovoltaic technology to university degrees not directly related with it and at the same time research in comparison of systems with different technologies. This is a good example of an solar plant for both optimum production and educational purposes.
Resumo:
El proyecto consiste en el diseño del sistema de climatización de un edificio ubicado en la ciudad de Madrid que utilice la energÃa solar como fuente de calor y electricidad. El objetivo es que el edificio tenga un consumo energético lo más bajo posible y que utilice energÃas de origen renovable para su explotación. Se incluye el cálculo de cargas térmicas, el dimensionamiento del sistema de climatización y de los sistemas de captación de energÃa solar (térmica y fotovoltaica). Adicionalmente, se definen las principales caracterÃsticas de un sistema de control centralizado que permita optimizar el rendimiento y monitorizar el funcionamiento de la instalación de forma continua. Se incluye el diseño de las instalaciones auxiliares con un grado de detalle suficiente que permita su valoración, tanto desde el punto de vista energético como económico. Como parte fundamental del proyecto, se extraen conclusiones acerca del ahorro energético de las instalaciones y se analiza la viabilidad económica de las inversiones. ABSTRACT The project covers the design of a Heating and Climatization System for a building located in the city of Madrid (Spain). The facilities will use solar energy as the main source for both heat and electricity. The main goals are to achieve the lowest possible energy consumption and to use renewable sources of energy to cover it. Calculation of thermal charges is included, together with the sizing of both the Climatization System and the Solar Energy (Thermal and PV) facilities. In addition, the main characteristics of a Centralized Control System are defined. This will help both to optimize the performance of the different systems involved and to monitor the operation. Design of all auxiliary systems is included with enough level of detail as to be able to evaluate them from both energetic and economic points of view. Paramount in this project is to be able to draw conclusions about the energy savings and the profitability (or not) of the main investments to be carried out
Resumo:
The intermediate band solar cell (IBSC) is based on a novel photovoltaic concept and has a limiting efficiency of 63.2%, which compares favorably with the 40.7% efficiency of a conventional, single junction solar cell. It is characterized by a material hosting a collection of energy levels within its bandgap, allowing the cell to exploit photons with sub-bandgap energies in a two-step absorption process, thus improving the utilization of the solar spectrum. However, these intermediate levels are often regarded as an inherent source of supplementary recombination, although this harmful effect can in theory be counteracted by the use of concentrated light. We present here a novel, low-temperature characterization technique using concentrated light that reveals how the initially enhanced recombination in the IBSC is reduced so that its open-circuit voltage is completely recovered and reaches that of a conventional solar cell.
Resumo:
With the purpose of assessing the absorption coefficients of quantum dot solar cells, symmetry considerations are introduced into a Hamiltonian whose eigenvalues are empirical. In this way, the proper transformation from the Hamiltonian's diagonalized form to the form that relates it with Γ-point exact solutions through k.p envelope functions is built accounting for symmetry. Forbidden transitions are thus determined reducing the calculation burden and permitting a thoughtful discussion of the possible options for this transformation. The agreement of this model with the measured external quantum efficiency of a prototype solar cell is found to be excellent.
Resumo:
One of the key components of highly efficient multi-junction concentrator solar cells is the tunnel junction interconnection. In this paper, an improved 3D distributed model is presented that considers real operation regimes in a tunnel junction. This advanced model is able to accurately simulate the operation of the solar cell at high concentraions at which the photogenerated current surpasses the peak current of the tunnel junctionl Simulations of dual-junction solar cells were carried out with the improved model to illustrate its capabilities and the results have been correlated with experimental data reported in the literature. These simulations show that under certain circumstances, the solar cells short circuit current may be slightly higher than the tunnel junction peak current without showing the characteristic dip in the J-V curve. This behavior is caused by the lateral current spreading toward dark regions, which occurs through the anode/p-barrier of the tunnel junction.