988 resultados para HeLa cells.
Resumo:
Induction of apoptosis by tumor necrosis factor (TNF) is modulated by changes in the expression and activity of several cell cycle regulatory proteins. We examined the effects of TNF (1-100 ng/ml) and butyrolactone I (100 µM), a specific inhibitor of cyclin-dependent kinases (CDK) with high selectivity for CDK-1 and CDK-2, on three different cancer cell lines: WEHI, L929 and HeLa S3. Both compounds blocked cell growth, but only TNF induced the common events of apoptosis, i.e., chromatin condensation and ladder pattern of DNA fragmentation in these cell lines. The TNF-induced apoptosis events were increased in the presence of butyrolactone. In vitro phosphorylation assays for exogenous histone H1 and endogenous retinoblastoma protein (pRb) in the total cell lysates showed that treatment with both TNF and butyrolactone inhibited the histone H1 kinase (WEHI, L929 and HeLa) and pRb kinase (WEHI) activities of CDKs, as compared with the controls. The role of proteases in the TNF and butyrolactone-induced apoptosis was evaluated by comparing the number and expression of polypeptides in the cell lysates by gel electrophoresis. TNF and butyrolactone treatment caused the disappearance of several cellular protein bands in the region between 40-200 kDa, and the 110- 90- and 50-kDa proteins were identified as the major substrates, whose degradation was remarkably increased by the treatments. Interestingly, the loss of several cellular protein bands was associated with the marked accumulation of two proteins apparently of 60 and 70 kDa, which may be cleavage products of one or more proteins. These findings link the decrease of cyclin-dependent kinase activities to the increase of protease activities within the growth arrest and apoptosis pathways induced by TNF.
Resumo:
Gene therapy is predicated upon efficient gene transfer. While viral vectors are the method of choice for transformation efficiency, the immunogenicity and safety concerns remain problematic. Non-viral vectors, on the other hand, have shown high degrees of safety and are mostly non-immunogenic in nature. However, non-viral vectors usually suffer from low levels oftransformation efficiency and transgene expression. Thus, increasing transformation efficiency ofnon-viral vectors, in particular by calcium phosphate co-precipitation technique, is a way of generating a suitable vector for gene therapy and is the aim of this study. It is a long known fact that different cell lines have different transfection efficiencies regardless oftransfection methodology (Lin et a!., 1994). Using commonly available cell lines Madine-Darby Bovine Kidney (MDBK), HeLa and Human Embryonic Kidney (HEK-293), we have shown a decreasing trend ofDNase activity based on a plasmid digestion assay. From densitometry studies, as much as a 40% reduction in DNase activity was observed when comparing HEK-293 (least active) to MDBK (most active). Using various biochemical assays, it was determined that DNase y, in particular, was expressed more highly in MDBK cells than both HeLa and HEK-293. Upon cloning of the bovine DNase y gene, we utilized the sequence information to construct antisense expressing plasmids via both traditional antisense RNA (pASDGneoM) and siRNA (psiRNA-S4, psiRNA-S11 and psiRNA-S16). For the construction ofpASDGneoM, the 3' end of the DNase y was inserted in opposite orientation under a cytomegalovirus (CMV) promoter such that the expression ofRNA complementary to the DNase 2 ymRNA occurred. For siRNA plasmids, the sequence was screened to yield optimal short sequences for siRNA inhibition. The silencing ofbovine DNase y led to an increase in transfection efficiency based on traditional calcium phosphate co-precipitation technique; stable clones of siRNA-producing MDBK cell lines (psiRNA-S4 Bland psiRNA-S4 B4) both demol).strated 4-fold increases in transfection efficiency. Furthermore, serial transfection of antisense DNase y plasmid pASDGneoM and reporter pCMV-~ showed a maximum of 8-fold increase in transfection efficiency when the two separate transfections were carried out 4 hours apart (i.e. transfection ofpASDGneoM, separated by four hours, then transfection ofpCMV-~). Together, these results demonstrate the involvement ofDNase y in reducing transfection efficiency, at least by traditional calcium phosphate technique.
Resumo:
Der Fokus dieser Arbeit lag auf der definierten Synthese multifunktioneller Polymer-Konjugate zur Anwendung in der Krebs-Immunotherapie. Durch gezielte Variation der Kon-jugationsbedingungen wurde Zusammensetzung, Größe und Aggregationsverhalten in Zell-medium sowie in humanem Serum untersucht. Nach definierter physikalisch-chemischer Charakterisierung wurde dann die induzierte Antigen-Präsentation zur Aktivierung der T-Zellproliferation analysiert.rnDafür wurden zwei verschiedene polymere Carrier-Systeme gewählt, lineares Poly-L-lysin und eine Polylysinbürste (PLL-Bürste). Es wird vermutet, dass die PLL-Bürste aufgrund der anisotropen Form eine bessere Verteilung im Körper und eine verlängerte Zirkulationsdauer zeigen wird. Die zu konjugierenden biologisch aktiven Komponenten waren der antiDEC205-Antikörper (aDEC205) für die gezielte Adressierung CD8-positiver dendritischer Zellen (DC), ein Ovalbumin (OVA)-spezifisches Antigen mit der Kernsequenz SIINFEKL für die Spezifität der Immunantwort gegen Krebszellen, die dieses Antigen tragen, und ein immunaktivieren-der TLR9-Ligand, CpG1826. Die Effizienz dieses Konjugates dendritische Zellen zu aktivieren, welche wiederum eine Immunantwort gegen OVA-exprimierende Krebszellen induzieren, wurde durch die Konjugation aller Komponenten am identischen Trägermolekül deutlich höher erwartet.rnLineares Poly-L-lysin diente als Modellsystem um die Konjugationschemie zu etablieren und dann auf die zylindrische Polylysinbürste zu übertragen. Anhand dieser polymeren Träger wurde das Verhalten der verschiedenen Topologien des Knäuels und der Bürste im Hinblick auf den Einfluss struktureller Unterschiede sowohl auf Konjugationsreaktionen als auch auf das in situ und in vitro Verhalten untersucht.rnFluoreszenzmarkiertes Antigen und der CpG Aktivator konnten jeweils aufgrund einer Thiol-Modifizierung an die Thiol-reaktive Maleimidgruppe des heterobifunktionellen Linkers Sulfo-SMCC an PLL-AlexaFluor48 konjugiert werden. Anschließend wurde aDEC205-AlexaFluor647 an PLL gekoppelt, entweder durch Schiff Base-Reaktion des oxidierten Antikörpers mit PLL und anschließender Reduzierung oder durch Click-Reaktion des PEG-Azids modifizierten An-tikörpers mit Dicyclobenzylcyclooctin (DIBO)-funktionalisiertem PLL. Die Konjugation der biologisch aktiven Komponenten wurde mit Durchflusszytometrie (FACS) und konfokaler Laser Scanning Mikroskopie (CLSM) untersucht und die Zusammensetzung des Konjugatesrnmittels UV/Vis-Spektroskopie bestimmt. Die PLL-Bürste alleine zeigte eine hohe Zytotoxizität bei HeLa und JAWS II Zelllinien, wohingegen lineares PLL und PLL-Konjugate sowie die PLL Bürsten-Konjugate keine ausgeprägte Zytotoxizität aufwiesen. Die Polymer-Konjugate wie-sen keine Aggregation in Zellmedium oder humanem Serum auf, was mittels winkelabhängi-ger dynamischer Lichtstreuung bestimmt wurde. CLSM Aufnahmen zeigten Kolokalisation der an die einzelnen Komponenten gebundenen Fluoreszenzfarbstoffe in dendritischen Zel-len, was die erfolgreiche Konjugation und Internalisierung der Konjugate in die Zellen bele-gen konnte. FACS Messungen ergaben eine geringfügig erhöhte Aufnahme des adressierten PLL-Antigen-Antikörper-Konjugates verglichen mit dem PLL-Antigen-Konjugat. Experimente mit dem „Specific Hybridization Internalization Sensor“ (SHIP) zeigten jedoch nur Aufnahme der PLL-Konjugate in CD8+ unreife DC, nicht in reife DC, die nicht mehr unspezifisch, sondern nur noch über Rezeptoren internalisieren. Dies bewies die unspezifische Aufnahme des Kon-jugates, da Antikörper-Konjugation keine Rezeptor-vermittelte Endozytose in reife DC indu-zieren konnte. T-Zell-Proliferationsassays ergaben eine Aktivierung von CD8+ T-Zellen indu-ziert durch Antigen-tragende Konjugate, wohingegen Konjugate ohne Antigen als Negativ-kontrollen dienten und keine T-Zell-Proliferation erzielten. Es konnte jedoch kein Unter-schied zwischen adressierten und nicht adressierten Konjugaten aufgrund der unspezifischen Aufnahme durch das Polymer beobachtet werden. Lösliches SIINFEKL alleine bewirkte schon bei geringeren Konzentrationen eine T-Zell-Proliferation.rnEs war somit möglich, drei biologischen Komponenten an einen polymeren Träger zu konju-gieren und diese Konjugate im Hinblick auf Zusammensetzung, Größe, Internalisierung in dendritische Zellen und Aktivierung der T-Zell-Proliferation zu untersuchen. Außerdem wur-de die Konjugationschemie erfolgreich von dem Modellsystem des linearen PLL auf die PLL-Bürste übertragen. Die Polymer-Konjugate werde unspezifisch in DC aufgenommen und in-duzieren T-Zellproliferation, die mit Antigen-Präsentationsassays nachgewiesen wird. Es konnte jedoch durch Konjugation des Antikörpers keine Rezeptor-vermittelte Aufnahme in CD8+ DC erzielt werden.rnDiese Studien stellen einen erfolgsversprechenden ersten Schritt zur Entwicklung neuer Na-nomaterialien für die Anwendung in Krebs-Immuntherapie dar.
Resumo:
In over 90% of cervical cancers and cancer-derived cell lines, the p53 tumor suppressor pathway is disrupted by human papillomavirus (HPV). The HPV E6 protein promotes the degradation of p53 and thus inhibits the stabilization and activation of p53 that would normally occur in response to HPV E7 oncogene expression. Restoration of p53 function in these cells by blocking this pathway should promote a selective therapeutic affect. Here we show that treatment with the small molecule nuclear export inhibitor, leptomycin B, and actinomycin D leads to the accumulation of transcriptionally active p53 in the nucleus of HeLa, CaSki, and SiHa cells. Northern blot analyses showed that both actinomycin D and leptomycin B reduced the amount of HPV E6-E7 mRNA whereas combined treatment with the drugs showed almost complete disappearance of the viral mRNA. The combined treatment activated p53-dependant transcription, and increases in both p21WAF1/CIP1 and Hdm2 mRNA were seen. The combined treatment resulted in apoptotic death in the cells, as evidenced by nuclear fragmentation and PARP-cleavage indicative of caspase 3 activity. These effects were greatly reduced by expressing a dominant negative p53 protein. The present study shows that small molecules can reactivate p53 in cervical carcinoma cells, and this reactivation is associated with an extensive biological response, including the induction of the apoptotic death of the cells.
Resumo:
Transcription-coupled repair (TCR) plays an important role in removing DNA damage from actively transcribed genes. It has been speculated that TCR is the most important mechanism for repairing DNA damage in non-dividing cells such as neurons. Therefore, abnormal TCR may contribute to the development of many age-related and neurodegenerative diseases. However, the molecular mechanism of TCR is not well understood. Oligonucleotide DNA triplex formation provides an ideal system to dissect the molecular mechanism of TCR since triplexes can be formed in a sequence-specific manner to inhibit transcription of target genes. We have recently studied the molecular mechanism of triplex-forming oligonucleotide (TFO)-mediated TCR in HeLa nuclear extracts. Using plasmid constructs we demonstrate that the level of TFO-mediated DNA repair activity is directly correlated with the level of transcription of the plasmid in HeLa nuclear extracts. TFO-mediated DNA repair activity was further linked with transcription since the presence of rNTPs in the reaction was essential for AG30-mediated DNA repair activity in HeLa nuclear extracts. The involvement of individual components, including TFIID, TFIIH, RNA polymerase II and xeroderma pigmentosum group A (XPA), in the triplex-mediated TCR process was demonstrated in HeLa nuclear extracts using immunodepletion assays. Importantly, our studies also demonstrated that XPC, a component involved in global genome DNA repair, is involved in the AG30-mediated DNA repair process. The results obtained in this study provide an important new understanding of the molecular mechanisms involved in the TCR process in mammalian cells.
Human protein Sam68 relocalization and interaction with poliovirus RNA polymerase in infected cells.
Resumo:
A HeLa cDNA expression library was screened for human polypeptides that interacted with the poliovirus RNA-dependent RNA polymerase, 3D, using the two-hybrid system in the yeast Saccharomyces cerevisiae. Sam68 (Src-associated in mitosis, 68 kDa) emerged as the human cDNA that, when fused to a transcriptional activation domain, gave the strongest 3D interaction signal with a LexA-3D hybrid protein. 3D polymerase and Sam68 coimmunoprecipitated from infected human cell lysates with antibodies that recognized either protein. Upon poliovirus infection, Sam68 relocalized from the nucleus to the cytoplasm, where poliovirus replication occurs. Sam68 was isolated from infected cell lysates with an antibody that recognizes poliovirus protein 2C, suggesting that it is found on poliovirus-induced membranes upon which viral RNA synthesis occurs. These data, in combination with the known RNA- and protein-binding properties of Sam68, make Sam68 a strong candidate for a host protein with a functional role in poliovirus replication.
Resumo:
The structure of m7GpppN (where N is any nucleotide), termed cap, is present at the 5' end of all eukaryotic cellular mRNAs (except organellar). The eukaryotic initiation factor 4E (eIF-4E) binds to the cap and facilitates the formation of translation initiation complexes. eIF-4E is implicated in control of cell growth, as its overexpression causes malignant transformation of rodent cells and deregulates HeLa cell growth. It was suggested that overexpression of eIF-4E results in the enhanced translation of poorly translated mRNAs that encode growth-promoting proteins. Indeed, enhanced expression of several proteins, including cyclin D1 and ornithine decarboxylase (ODC), was documented in eIF-4E-overexpressing NTH 3T3 cells. However, the mechanism underlying this increase has not been elucidated. Here, we studied the mode by which eIF-4E increases the expression of cyclin D1 and ODC. We show that the increase in the amount of cyclin D1 and ODC is directly proportional to the degree of eIF-4E overexpression. Two mechanisms, which are not mutually exclusive, are responsible for the increase. In eIF-4E-overexpressing cells the rate of translation initiation of ODC mRNA was increased inasmuch as the mRNA sedimented with heavier polysomes. For cyclin D1 mRNA, translation initiation was not increased, but rather its amount in the cytoplasm increased, without a significant increase in total mRNA. Whereas, in the parental NIH 3T3 cell line, a large proportion of the cyclin D1 mRNA was confined to the nucleus, in eIF-4E-overexpressing cells the vast majority of the mRNA was present in the cytoplasm. These results indicate that eIF-4E affects directly or indirectly mRNA nucleocytoplasmic transport, in addition to its role in translation initiation.
Resumo:
The developmental stage- and erythroid lineage-specific activation of the human embryonic zeta- and fetal/adult alpha-globin genes is controlled by an upstream regulatory element [hypersensitive site (HS)-40] with locus control region properties, a process mediated by multiple nuclear factor-DNA complexes. In vitro DNase I protection experiments of the two G+C-rich, adult alpha-globin promoters have revealed a number of binding sites for nuclear factors that are common to HeLa and K-562 extracts. However, genomic footprinting analysis has demonstrated that only a subset of these sites, clustered between -130 and +1, is occupied in an erythroid tissue-specific manner. The function of these in vivo-occupied motifs of the alpha-globin promoters, as well as those previously mapped in the HS-40 region, is assayed by site-directed mutagenesis and transient expression in embryonic/fetal erythroid K-562 cells. These studies, together with our expression data on the human embryonic zeta-globin promoter, provide a comprehensive view of the functional roles of individual nuclear factor-DNA complexes in the final stages of transcriptional activation of the human alpha-like globin promoters by the HS-40 element.
Resumo:
Benzene is a ubitiquous human environment mental carcinogen. One of the major metabolites is hydroquinone, which is oxidized in vivo to give p-benzoquinone (p-BQ). Both metabolites are toxic to human cells. p-BQ reacts with DNA to form benzetheno adducts with deoxycytidine, deoxyadenosine, and deoxyguanosine. In this study we have synthesized the exocyclic compounds 3-hydroxy-3-N4-benzetheno-2'-deoxycytidine (p-BQ-dCyd) and 9-hydroxy-1,N6-benzetheno-2'-deoxyadenosine (p-BQ-dAdo), respectively, by reacting deoxycytidine and deoxyadenosine with p-BQ. These were converted to the phosphoamidites, which were then used to prepare site-specific oligonucleotides with either the p-BQ-dCyd or p-BQ-dAdo adduct (pbqC or pbqA in sequences) at two different defined positions. These oligonucleotides were efficiently nicked 5' to the adduct by partially purified HeLa cell extracts--the pbqC-containing oligomer more rapidly than the pbqA-containing oligomer. In contrast to the enzyme binding to derivatives produced by the vinyl chloride metabolite chloroacetaldehyde, the oligonucleotides up to 60-mer containing p-BQ adducts did not bind measurably to the same enzyme preparation in a gel retardation assay. Furthermore, there was no competition for the binding observed between oligonucleotides containing 1,N6-etheno A deoxyadenosine (1,N6-etheno-dAdo; epsilon A in sequences) and these oligomers containing either of the p-BQ adducts, even at 120-fold excess. When highly purified fast protein liquid chromatography (FPLC) enzyme fractions were obtained, there appeared to be two closely eluting nicking activities. One of these enzymes bound and cleaved the epsilon A-containing deoxyoligonucleotide. The other enzyme cleaved the pbqA- and pbqC-containing deoxyoligonucleotides. One additional unexpected fact was that bulk p-BQ-treated salmon sperm DNA did compete effectively with the epsilon A-containing oligonucleotide for protein binding. This raises the possibility that such DNA contains other, as-yet-uncharacterized adducts that are recognized by the same enzyme that recognizes the etheno adducts. In summary, we describe a previously undescribed human DNA repair activity, possibly a glycosylase, that excises from DNA pbqC and pbqA, exocyclic adducts resulting from reaction of deoxycytidine and deoxyadenosine with the benzene metabolite, p-BQ. This glycosylase activity is not identical to the one previously reported from this laboratory as excising the four etheno bases from DNA.
Resumo:
Arginase 1 deficiency, a urea cycle disorder resulting from an inability of the body to convert arginine into urea, results in hyperargininemia and sporadic episodes of hyperammonemia. Arginase 1 deficiency can lead to a range of developmental disorders and progressive spastic diplegia in children, and current therapeutic options are limited. Clustered regularly interspaced short palindromic repeat (CRISPR) /CRISPR associated protein (Cas) 9 gene editing systems serve as a novel means of treating genetic disorders such as Arginase 1 (ARG1) deficiency, and must be thoroughly examined to determine their curative capabilities. In these experiments numerous guide RNAs and CRISPR/Cas9 systems targeting the ARG1 gene were designed and observed by heteroduplex assay for their targeting capabilities and cleavage efficiencies in multiple cell lines. The CRISPR/Cas9 system utilized in these experiments, along with a panel of guide RNAs targeting various locations in the arginase 1 gene, successfully produced targeted cleavage in HEK293, MCF7, A549, K562, HeLa, and HepG2 cells; however, targeted cleavage in human dermal fibroblasts, blood outgrowth endothelial cells, and induced pluripotent stem cells was not observed. Additionally, a CRISPR/Cas system involving partially inactivated Cas9 was capable of producing targeted DNA cleavage in intron 1 of ARG1, while a Cas protein termed Cpf1 was incapable of producing targeted cleavage. These results indicate a complex set of variables determining the CRISPR/Cas9 systems’ capabilities in the cell lines and primary cells tested. By examining epigenetic factors and alternative CRISPR/Cas9 gene targeting systems, the CRISPR/Cas9 system can be more thoroughly considered in its ability to act as a means towards editing the genome of arginase 1-deficient individuals.
Resumo:
Characterized for the first time in erythrocytes, phosphatidylinositol phosphate kinases (PIP kinases) belong to a family of enzymes that generate various lipid messengers and participate in several cellular processes, including gene expression regulation. Recently, the PIPKIIα gene was found to be differentially expressed in reticulocytes from two siblings with hemoglobin H disease, suggesting a possible relationship between PIPKIIα and the production of globins. Here, we investigated PIPKIIα gene and protein expression and protein localization in hematopoietic-derived cells during their differentiation, and the effects of PIPKIIα silencing on K562 cells. PIPKIIα silencing resulted in an increase in α and γ globins and a decrease in the proliferation of K562 cells without affecting cell cycle progression and apoptosis. In conclusion, using a cell line model, we showed that PIPKIIα is widely expressed in hematopoietic-derived cells, is localized in their cytoplasm and nucleus, and is upregulated during erythroid differentiation. We also showed that PIPKIIα silencing can induce α and γ globin expression and decrease cell proliferation in K562 cells.
Resumo:
Protocols for the generation of dendritic cells (DCs) using serum as a supplementation of culture media leads to reactions due to animal proteins and disease transmissions. Several types of serum-free media (SFM), based on good manufacture practices (GMP), have recently been used and seem to be a viable option. The aim of this study was to evaluate the results of the differentiation, maturation, and function of DCs from Acute Myeloid Leukemia patients (AML), generated in SFM and medium supplemented with autologous serum (AS). DCs were analyzed by phenotype characteristics, viability, and functionality. The results showed the possibility of generating viable DCs in all the conditions tested. In patients, the X-VIVO 15 medium was more efficient than the other media tested in the generation of DCs producing IL-12p70 (p=0.05). Moreover, the presence of AS led to a significant increase of IL-10 by DCs as compared with CellGro (p=0.05) and X-Vivo15 (p=0.05) media, both in patients and donors. We concluded that SFM was efficient in the production of DCs for immunotherapy in AML patients. However, the use of AS appears to interfere with the functional capacity of the generated DCs.
Resumo:
This study aimed at evaluating the functional activation and activating receptors expression on resting, short- and long-term NK and NK-like T cells from blood of ovarian neoplasia patients. Blood from patients with adnexal benign alterations (n = 10) and ovarian cancer (grade I-IV n = 14) were collected after signed consent. Effector cells activation was evaluated by the expression of the CD107a molecule. Short-term culture was conducted overnight with IL-2 and long-term culture for 21 days, by a method designed to expand CD56(+) lymphocytes. Short-term culture significantly increased NK cells activation compared to resting NK cells (p<0.05), however, the long-term procedure supported an even higher increase (p<0.001). Resting NK-like T cells showed poor activation, which was not altered by the culture procedures. The long-term culture effectively increased the expression of the activating receptors on NK and NK-like T cells, either by increasing the number of cells expressing a given receptor and/or by up-regulating their expression intensity. As a conclusion, the long-term culture system employed, resulted in a high number of functional NK cells. The culture system was particularly efficient on the up-regulation of NKp30 and DNAM-1 receptors on NK cells.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) are common environmental pollutants that occur naturally in complex mixtures. Many of the adverse health effects of PAHs including cancer are linked to the activation of intracellular stress response signaling. This study has investigated intracellular MAPK signaling in response to PAHs in extracts from urban air collected in Stockholm, Sweden and Limeira, Brazil, in comparison to BP in HepG2 cells. Nanomolar concentrations of PAHs in the extracts induced activation of MEK4 signaling with down-stream increased gene expression of several important stress response mediators. Involvement of the MEK4/JNK pathway was confirmed using siRNA and an inhibitor of JNK signaling resulting in significantly reduced MAPK signaling transactivated by the AP-1 transcription factors ATF2 and c-Jun. ATF2 was also identified as a sensitive stress responsive protein with activation observed at extract concentrations equivalent to 0.1 nM BP. We show that exposure to low levels of environmental PAH mixtures more strongly activates these signaling pathways compared to BP alone suggesting effects due to interactions. Taken together, this is the first study showing the involvement of MEK4/JNK/AP-1 pathway in regulating the intracellular stress response after exposure to nanomolar levels of PAHs in environmental mixtures.
Resumo:
Valproic acid (VPA) and trichostatin A (TSA) are known histone deacetylase inhibitors (HDACIs) with epigenetic activity that affect chromatin supra-organization, nuclear architecture, and cellular proliferation, particularly in tumor cells. In this study, chromatin remodeling with effects extending to heterochromatic areas was investigated by image analysis in non-transformed NIH 3T3 cells treated for different periods with different doses of VPA and TSA under conditions that indicated no loss of cell viability. Image analysis revealed chromatin decondensation that affected not only euchromatin but also heterochromatin, concomitant with a decreased activity of histone deacetylases and a general increase in histone H3 acetylation. Heterochromatin protein 1-α (HP1-α), identified immunocytochemically, was depleted from the pericentromeric heterochromatin following exposure to both HDACIs. Drastic changes affecting cell proliferation and micronucleation but not alteration in CCND2 expression and in ratios of Bcl-2/Bax expression and cell death occurred following a 48-h exposure of the NIH 3T3 cells particularly in response to higher doses of VPA. Our results demonstrated that even low doses of VPA (0.05 mM) and TSA (10 ng/ml) treatments for 1 h can affect chromatin structure, including that of the heterochromatin areas, in non-transformed cells. HP1-α depletion, probably related to histone demethylation at H3K9me3, in addition to the effect of VPA and TSA on histone H3 acetylation, is induced on NIH 3T3 cells. Despite these facts, alterations in cell proliferation and micronucleation, possibly depending on mitotic spindle defects, require a longer exposure to higher doses of VPA and TSA.