848 resultados para HYDROGEN LINES
Resumo:
The boreal forest of western Canada is being dissected by seismic lines used for oil and gas exploration. The vast amount of edge being created is leading to concerns that core habitat will be reduced for forest interior species for extended periods of time. The Ovenbird (Seiurus aurocapilla) is a boreal songbird known to be sensitive to newly created seismic lines because it does not include newly cut lines within its territory. We examined multiple hypotheses to explain potential mechanisms causing this behavior by mapping Ovenbird territories near lines with varying states of vegetation regeneration. The best model to explain line exclusion behavior included the number of neighboring conspecifics, the amount of bare ground, leaf-litter depth, and canopy closure. Ovenbirds exclude recently cut seismic lines from their territories because of lack of protective cover (lower tree and shrub cover) and because of reduced food resources due to large areas of bare ground. Food reduction and perceived predation risk effects seem to be mitigated once leaf litter (depth and extent of cover) and woody vegetation cover are restored to forest interior levels. However, as conspecific density increases, lines are more likely to be used as landmarks to demarcate territorial boundaries, even when woody vegetation cover and leaf litter are restored. This behavior can reduce territory density near seismic lines by changing the spatial distribution of territories. Landmark effects are longer lasting than the effects from reduced food or perceived predation risk because canopy height and tree density take >40 years to recover to forest interior levels. Mitigation of seismic line impacts on Ovenbirds should focus on restoring forest cover as quickly as possible after line cutting.
Resumo:
The Canadian Migration Monitoring Network (CMMN) consists of standardized observation and migration count stations located largely along Canada’s southern border. A major purpose of CMMN is to detect population trends of migratory passerines that breed primarily in the boreal forest and are otherwise poorly monitored by the North American Breeding Bird Survey (BBS). A primary limitation of this approach to monitoring is that it is currently not clear which geographic regions of the boreal forest are represented by the trends generated for each bird species at each station or group of stations. Such information on “catchment areas” for CMMN will greatly enhance their value in contributing to understanding causes of population trends, as well as facilitating joint trend analysis for stations with similar catchments. It is now well established that naturally occurring concentrations of deuterium in feathers grown in North America can provide information on their approximate geographic origins, especially latitude. We used stable hydrogen isotope analyses of feathers (δ²Hf) from 15 species intercepted at 22 CMMN stations to assign approximate origins to populations moving through stations or groups of stations. We further constrained the potential catchment areas using prior information on potential longitudinal origins based upon bird migration trajectories predicted from band recovery data and known breeding distributions. We detected several cases of differences in catchment area of species passing through sites, and between seasons within species. We discuss the importance of our findings, and future directions for using this approach to assist conservation of migratory birds at continental scales.
Resumo:
Noncovalent interactions play key roles in many natural processes leading to the self-assembly of molecules with the formation of supramolecular structures. One of the most important forces responsible for self-assembly is hydrogen bonding, which also plays an important role in the self-assembly of synthetic polymers in aqueous solutions. Proton-accepting polymers can associate with proton-donating polymers via hydrogen bonding in aqueous solutions and form polymer-polymer or interpolymer complexes. There has been an increased interest among researchers in hydrogen-bonded interpolymer complexes since the first pioneering papers were published in the early 1960s. Several hundred research papers have been published on various aspects of complex formation reactions in solutions and interfaces, properties of interpolymer complexes and their potential applications. This book focuses on the latest developments in the area of interpolymer complexation via hydrogen bonding. It represents a collection of original and review articles written by recognized experts from Germany, Greece, Kazakhstan, Poland, Romania, Russia, UK, Ukraine, and the USA. It highlights many important applications of interpolymer complexes, including the stabilization of colloidal systems, pharmaceuticals, and nanomaterials.
Resumo:
The Holocene estuarine silts of the Severn Estuary Levels (southwest Britain) are representative of their kind in northwest Europe. They contain two broad types of plant material: particles codeposited with mineral grains from the estuarine water body, and extraneous debris (stems of indigenous prior plants; post depositional root matter) which is difficult to remove completely by physical means. Treatment with hydrogen peroxide before laser granulometry removes all plant material regardless of kind, drastically reduces values for the mean grain size and median size relative to untreated samples, but has little effect on the mode, except for a restricted group of bimodal-platykurtic, medium-coarse silts. It is concluded that, in the case of sediments of the general kind examined, no advantages acrue from the treatment of samples with hydrogen peroxide prior to analysis. Although a discrete rather than continuous variable, values of the mode obtained from untreated sediments are suggested to be acceptable for most purposes where a measure of central tendency is required.
Resumo:
The formation of hydrogen-bonded interpolymer complexes between poly(acrylic acid) and poly(N-vinyl pyrrolidone) as well as amphiphilic copolymers of N-vinyl pyrrolidone with vinyl propyl ether has been studied in aqueous and organic solutions. It was demonstrated that introduction of vinyl propyl ether units into the macromolecules of the nonionic polymer enhances their ability to form complexes in aqueous solutions due to more significant contribution of hydrophobic effects. The complexation was found to be a multistage process that involves the formation of primary polycomplex particles, which further aggregate to form spherical nanoparticles. Depending on the environmental factors (pH, solvent nature), these nanoparticles may either form stable colloidal solutions or undergo further aggregation, resulting in precipitation of interpolymer complexes. In organic solvents, the intensity of complex formation increases in the following order: methanol < ethanol < isopropanol < dioxane. The multilayered coatings were developed using layer-by-layer deposition of interpolymer complexes on glass surfaces. It was demonstrated that the solvent nature affects the efficiency of coating deposition.
The influence of spatial variability of boundary-layer moisture on tropical continental squall lines