896 resultados para HOLLOW CAPSULES
Resumo:
The phase diagram of the Cr-W-O system at 1000° C was established by metallographic and X-ray identification of the phases present after equilibration in evacuated silica capsules. Two ternary oxide phases, CrWO4 and Cr2WO6 were detected. The oxygen potential over the three-phase mixtures, W+Cr2O3 s+CrWO4, WO2.90+CrWO4+Cr2WO6 and Cr2O3+CrWO4+Cr2WO6, were measured by solid state cells incorporating Y2O3 stabilized ZrO2 electrolyte and Ni+NiO reference electrode. The Gibbs' energies of formation of the two ternary phases can be represented by the following equations
Resumo:
P-aminobenzoate- intercalated copper hydroxysalt was prepared by coprecipitation at high pH (similar to 12). As the pH was reduced to similar to 7 on washing with water, the development of partial positive charge on the amine end of the intercalated anion caused repulsion between the layers leading to delamination and colloidal dispersion of monolayers of copper hydroxysalt in water. The dispersed copper hydroxysalt monolayers were used as precursors for the synthesis of copper(I)/(II) oxide nanoparticles at room temperature. While the hydroxysalt layers yielded spindle-shaped CuO particles when left to stand, they formed hollow spherical nanoparticles of Cu(2)O when treated with an alkaline solution of ascorbic acid.
Resumo:
Novel ultrasound-sensitive nanocapsules were designed via layer-by-layer assembly (LbL) of polyelectrolytes for remote activated release of biomolecules/drug. Nanocapsules embedded with silver nanoparticles in the walls were synthesized by alternate assembly of poly(allylamine hydrochloride) (PAH) and dextran sulfate (DS) on silica template followed by nanoparticle synthesis and subsequent template removal thus yielding nanocapsules. The silver NPs were synthesized in situ within the capsule walls under controlled conditions. The nanocapsules were found to be well dispersed and the silver NPs were evenly distributed within the shell. FITC-dextran permeated easily into the capsules containing silver NP's due to the pores generated during the formation of NP's. When the loaded nanocapsules were sonicated, the presence of the silver NPs in the shell structure led to rupturing of the shell into smaller fragments thus releasing the FITC-dextran. Such nanocapsules have the potential to be used as drug delivery vehicles and offer the scope for further development in the areas of modern medicine, material science, and biochemistry. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Classical literature on solid mechanics claims existence of radial deformation due to torsion but there is hardly any literature on analytic solutions capturing this phenomenon. This paper tries to solve this problem in an asymptotic sense using the variational asymptotic method (VAM). The method makes no ad hoc assumptions and hence asymptotic correctness is assured. The VAM splits the 3D elasticity problem into two parts: A 1D problem along the length of the cylinder which gives the twist and a 2D cross-sectional problem which gives the radial deformation. This enables closed form solutions, even for some complex problems. Starting with a hollow cylinder, made up of orthotropic but transversely isotropic material, the 3D problem has been formulated and solved analytically despite the presence of geometric nonlinearity. The general results have been specialized for particularly useful cases, such as solid cylinders and/or cylinders with isotropic material. DOI: 10.1115/1.4006803]
Resumo:
When stimulated by a point source of cyclic AMP, a starved amoeba of Dictyostelium discoideum responds by putting out a hollow balloon-like membrane extension followed by a pseudopod. The effect of the stimulus is to influence the position where either of these protrusions is made on the cell rather than to cause them to be made. Because the pseudopod forms perpendicular to the cell surface, its location is a measure of the precision with which the cell can locate the cAMP source. Cells beyond 1 h of starvation respond non-randomly with a precision that improves steadily thereafter. A cell that is starved for 1-2 h can locate the source accurately 43% of the time; and if starved for 6-7 h, 87% of the time. The response always has a high scatter; population-level heterogeneity reflects stochasticity in single cell behaviour. From the angular distribution of the response its maximum information content is estimated to be 2-3 bits. In summary, we quantitatively demonstrate the stochastic nature of the directional response and the increase in its accuracy over time.
Resumo:
Hollow structures with unique morphologies form due to particle agglomeration in acoustically levitated nanofluid functional droplets when subjected to external heating. The final diameter of the structure depends only on the ratio of agglomeration to evaporation time scales for various nanoparticle laden droplets, and not on the type of the suspended particles. These time scales depend only on nanoparticle concentration. This valuable information may be exploited to form microstructures with desired properties from ceramic compounds. Phase diagrams for alumina and silica droplets indicate the transition from a bowl to ring structure depending on concentration.
Resumo:
The configuration of hemoglobin in solution and confined inside silica nanotubes has been studied using synchrotron small angle X-ray scattering and electrochemical activity. Confinement inside submicron tubes of silica aid in preventing protein aggregation, which is vividly observed for unconfined protein in solution. The radius of gyration (R-g) and size polydispersity (p) of confined hemoglobin was found to be lower than that in solution. This was also recently demonstrated in case of confined hemoglobin inside layered polymer capsules. The confined hemoglobin displayed a higher thermal stability with Rg and p showing negligible changes in the temperature range 25-75 degrees C. The differences in configuration between the confined and unconfined protein were reflected in their electrochemical activity. Reversible electrochemical response (from cyclic voltammograms) obtained in case of the confined hemoglobin, in contrary to the observance of only a cathodic response for the unconfined protein, gave direct indication of the differences between the residences of the electroactive heme center in a different orientation compared to that in solution state. The confined Hb showed loss of reversibility only at higher temperatures. The electron transfer coefficient (alpha) and electron transfer rate constant (k(s)) were also different, providing additional evidence regarding structural differences between the unconfined and confined states of hemoglobin. Thus, absence of any adverse effects due to confinement of proteins inside the inorganic matrices such as silica nanotubes opens up new prospects for utilizing inorganic matrices as protein ``encapsulators'', as well as sensors at varying temperatures.
Resumo:
Solvent dependent and low temperature based Chalcopyrite CuIn1-xAlxS2 (CIAS) nano structures were synthesized by a simple one-pot solvothermal route. X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible spectroscopy and micro-Raman spectroscopy were used to characterize the nanostructures structurally and optically. CIAS hollow spheres were constructed from the nanoplates. Detailed formation mechanism of the hollow spheres was explained. Tentative optical phonon vibrational modes have been discussed. Steady state room temperature IR photodectection have been demonstrated with all the CIAS nanostructures under IR lamp illumination. Photo current was amplified by two orders and one order in case of nano needle like structures and hollow spheres respectively, which was explained based upon the trap assisted space charge. Growth and decay constants lasted for few milli seconds.
Resumo:
1. How a symbiosis originates and is maintained are important evolutionary questions. Symbioses in myrmecophytes (plants providing nesting for ants) are believed to be maintained by protection and nutrients provided by specialist plant-ants in exchange for nesting spaces (called domatia) and nourishment offered by ant-plants. However, besides the benefits accrued from housing protective ants, the mechanisms contributing to the fitness advantages of bearing domatia have rarely been examined, especially because the domatia trait is usually constitutively expressed, and many myrmecophytes have obligate mutualisms with single ant species resulting in invariant conditions. 2. In the unspecialized ant-plant Humboldtia brunonis (Fabaceae) that offers extrafloral nectar to ants, only some plants produce domatia in the form of hollow internodes. These domatia have a self-opening slit making them more prone to interlopers and are occupied mostly by non-protective ants and other invertebrates, especially arboreal earthworms. The protection mutualism with ants is restricted in geographical extent, occurring only at a few sites in the southernmost part of this plant's range in the Western Ghats of India. 3. We examined nutrient flux from domatia residents to the plant using stable isotopes. We found that between 9% (earthworms) and 17% (protective or non-protective ants) of nitrogen of plant tissues nearest the domatium came from domatia inhabitants. Therefore, interlopers such as earthworms and non-protective ants contributed positively to the nitrogen budget of localized plant modules of this understorey tree. N-15-enriched feeding experiments with protective ants demonstrated that nutrients flowed from domatia inhabitants to nearby plant modules. Fruit set did not differ between paired hand-pollinated inflorescences on domatia and non-domatia bearing branches. This was possibly due to the nutrient flux from domatia to adjacent branches without domatia within localized modules. 4. This study has demonstrated the nutritive role of non-protective ants and non-ant invertebrates, hitherto referred to as interlopers, in an unspecialized myrmecophyte. Our study suggests that even before the establishment of a specialized ant-plant protection mutualism, nutritional benefits conferred by domatia inhabitants can explain the fitness benefits of bearing domatia, and thus the maintenance of a trait that facilitates the establishment of a specialized ant-plant symbiosis.
Resumo:
We report the fabrication of dual enzyme responsive hollow nanocapsules which can be targeted to deliver anticancer agents specifically inside cancer cells. The enzyme responsive elements, integrated in the nanocapsule walls, undergo degradation in the presence of either trypsin or hyaluronidase leading to the release of encapsulated drug molecules. These nanocapsules, which were crosslinked and functionalised with folic acid, showed minimal drug leakage when kept in pH 7.4 PBS buffer, but released the drug molecules at a rapid rate in the presence of either one of the triggering enzymes. Studies on cellular interactions of these nanocapsules revealed that doxorubicin loaded nanocapsules were taken up by cervical cancer cells via folic acid receptor medicated endocytosis. Interestingly the nanocapsules were able to disintegrate inside the cancer cells and release doxorubicin which then migrated into the nucleus to induce cell death. This study indicates that these nanocapsules fabricated from biopolymers can serve as an excellent platform for targeted intracellular drug delivery to cancer cells.
Resumo:
Amphibians exhibit extraordinarily diverse sets of reproductive strategies among vertebrates. Understanding life history strategies in an evolutionary framework is lacking for many amphibian species in the tropics. Here, we report a novel reproductive mode where adult frogs enter hollow internodes of bamboo via a small opening, deposit direct developing eggs, and provide parental care. This behaviour is observed in two species of the frog genus Raorchestes. The first description of this unique life history and details of nest site characteristics and embryo development are provided along with ecological comparisons. Evolution of novel reproductive modes and parental care are discussed in context of natural selection. Dearth of natural history information on amphibians in the Western Ghats and much of the South-East Asian region is highlighted with suggestions for further studies.(c) 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 114, 1-11.
Resumo:
A comprehensive experimental study has been made on angular sand to investigate various aspects of mechanical behavior. A hollow cylinder torsion testing apparatus is used in this program to apply a range of stress conditions on this angular quartzitic fine sand under monotonic drained shear. The effect of the magnitude and inclination of the principal stresses on an element of sand is studied through these experiments. This magnitude and inclination of the principal stresses are presented as an ``ensemble measure of fabric in sands''. This ensemble measure of fabric in the sands evolves through the shearing process, and reaches the final state, which indeed has a unique fabric. The sand shows significant variation in strength with changing inclination of the principal stresses. The locus of the final stress state in principal stress space is also mapped from these series of experiments. Additional aspects of non-coaxiality, a benchmarking exercise with a few constitutive models is presented here. This experimental approach albeit indirect shows that a unique state which is dependent on the fabric, density and confining stress exists. This suite of experiments provides a well-controlled data set for a clear understanding on the mechanical behavior of sands.
Resumo:
The self-assembly of p-pyridyl-ended oligo-p-phenylenevinylenes (OPVs) in ethanol leads to the formation of either hollow or solid microrods. The corresponding protonated OPVs with n-butyl chains induce transparent gelation and also gel phase crystallization owing to various synergistic noncovalent interactions. The chloride ion-selective gelation, AIEE and stimuli responsiveness of the gel are also observed.
Resumo:
This work deals with an experimental study of the breakup characteristics of liquids with different surface tension and viscosity from a hollow cone hydraulic injector nozzle induced by pressure-swirl. The experiments were conducted at Reynolds numbers Re-p=9500-23,000. The surface tension and viscosity of the surrogate fuels were altered from 72 to 30 mN/m and 1.1 to 1.6 mN s/m(2), respectively. High speed photography and Phase Doppler Particle Anemometry were utilized to study the atomization process. Velocity and drop size measurements of the spray using PDPA in both axial and radial directions indicate a dependency on surface tension. However, these effects are dominant only at low Reynolds numbers and are negligible at high Reynolds number. Downstream of the nozzle, coalescence of droplets due to collision was also found to be significant and the diameters were compared for different liquids. For viscous fluids up to 1.6 cP, the independent effects of viscosity and injection pressure are studied. In general, the spray cone angle increases with increase in pressure. At high pressures, an increase in viscosity leads to higher drop sizes following primary and secondary breakup compared to water. This study will extend our understanding of surrogate fuel film breakup and highlight the importance of long and short wavelength instabilities. (C) 2013 Elsevier Ltd. All rights reserved
Resumo:
The major challenges in Li-S batteries are the formation of soluble polysulphides during the reversible conversion of S-8 <-> Li2S, large changes in sulphur particle volume during lithiation and extremely poor charge transport in sulphur. We demonstrate here a novel and simple strategy to overcome these challenges towards practical realization of a stable high performance Li-S battery. For the first time, a strategy is developed which does away with the necessity of pre-fabricated high surface area hollow-structured adsorbates and also multiple nontrivial synthesis steps related to sulphur loading inside such adsorbates. A lithiated polyethylene glycol (PEG) based surfactant tethered on ultra-small sulphur nanoparticles and wrapped up with polyaniline (PAni) (abbreviated as S-MIEC) is demonstrated here as an exceptional cathode for Li-S batteries. The PEG and PAni network around the sulphur nanoparticles serves as an efficient flexible trap for sulphur and polysulphides and also provides distinct pathways for electrons (through PAni) and ions (through PEG) during battery operation. Contrary to the cathodes demonstrated based on various carbon-sulphur composites, the mixed conducting S-MIEC showed an extremely high loading of 75%. The S-MIEC exhibited a stable capacity of nearly 900 mA h g(-1) at the end of 100 cycles at a 1C current rate.