884 resultados para HISTORICAL DATA-ANALYSIS


Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND & AIMS Metabolomics is comprehensive analysis of low-molecular-weight endogenous metabolites in a biological sample. It could enable mapping of perturbations of early biochemical changes in diseases and hence provide an opportunity to develop predictive biomarkers that could provide valuable insights into the mechanisms of diseases. The aim of this study was to elucidate the changes in endogenous metabolites and to phenotype the metabolic profiling of d-galactosamine (GalN)-inducing acute hepatitis in rats by UPLC-ESI MS. METHODS The systemic biochemical actions of GalN administration (ip, 400 mg/kg) have been investigated in male wistar rats using conventional clinical chemistry, liver histopathology and metabolomic analysis of UPLC- ESI MS of urine. The urine was collected predose (-24 to 0 h) and 0-24, 24-48, 48-72, 72-96 h post-dose. Mass spectrometry of the urine was analysed visually and via conjunction with multivariate data analysis. RESULTS Results demonstrated that there was a time-dependent biochemical effect of GalN dosed on the levels of a range of low-molecular-weight metabolites in urine, which was correlated with developing phase of the GalN-inducing acute hepatitis. Urinary excretion of beta-hydroxybutanoic acid and citric acid was decreased following GalN dosing, whereas that of glycocholic acid, indole-3-acetic acid, sphinganine, n-acetyl-l-phenylalanine, cholic acid and creatinine excretion was increased, which suggests that several key metabolic pathways such as energy metabolism, lipid metabolism and amino acid metabolism were perturbed by GalN. CONCLUSION This metabolomic investigation demonstrates that this robust non-invasive tool offers insight into the metabolic states of diseases.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Organisations are constantly seeking efficiency gains for their business processes in terms of time and cost. Management accounting enables detailed cost reporting of business operations for decision making purposes, although significant effort is required to gather accurate operational data. Process mining, on the other hand, may provide valuable insight into processes through analysis of events recorded in logs by IT systems, but its primary focus is not on cost implications. In this paper, a framework is proposed which aims to exploit the strengths of both fields in order to better support management decisions on cost control. This is achieved by automatically merging cost data with historical data from event logs for the purposes of monitoring, predicting, and reporting process-related costs. The on-demand generation of accurate, relevant and timely cost reports, in a style akin to reports in the area of management accounting, will also be illustrated. This is achieved through extending the open-source process mining framework ProM.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The current state of knowledge in relation to first flush does not provide a clear understanding of the role of rainfall and catchment characteristics in influencing this phenomenon. This is attributed to the inconsistent findings from research studies due to the unsatisfactory selection of first flush indicators and how first flush is defined. The research study discussed in this thesis provides the outcomes of a comprehensive analysis on the influence of rainfall and catchment characteristics on first flush behaviour in residential catchments. Two sets of first flush indicators are introduced in this study. These indicators were selected such that they are representative in explaining in a systematic manner the characteristics associated with first flush. Stormwater samples and rainfall-runoff data were collected and recorded from stormwater monitoring stations established at three urban catchments at Coomera Waters, Gold Coast, Australia. In addition, historical data were also used to support the data analysis. Three water quality parameters were analysed, namely, total suspended solids (TSS), total phosphorus (TP) and total nitrogen (TN). The data analyses were primarily undertaken using multi criteria decision making methods, PROMETHEE and GAIA. Based on the data obtained, the pollutant load distribution curve (LV) was determined for the individual rainfall events and pollutant types. Accordingly, two sets of first flush indicators were derived from the curve, namely, cumulative load wash-off for every 10% of runoff volume interval (interval first flush indicators or LV) from the beginning of the event and the actual pollutant load wash-off during a 10% increment in runoff volume (section first flush indicators or P). First flush behaviour showed significant variation with pollutant types. TSS and TP showed consistent first flush behaviour. However, the dissolved fraction of TN showed significant differences to TSS and TP first flush while particulate TN showed similarities. Wash-off of TSS, TP and particulate TN during the first 10% of the runoff volume showed no influence from corresponding rainfall intensity. This was attributed to the wash-off of weakly adhered solids on the catchment surface referred to as "short term pollutants" or "weakly adhered solids" load. However, wash-off after 10% of the runoff volume showed dependency on the rainfall intensity. This is attributed to the wash-off of strongly adhered solids being exposed when the weakly adhered solids diminish. The wash-off process was also found to depend on rainfall depth at the end part of the event as the strongly adhered solids are loosened due to impact of rainfall in the earlier part of the event. Events with high intensity rainfall bursts after 70% of the runoff volume did not demonstrate first flush behaviour. This suggests that rainfall pattern plays a critical role in the occurrence of first flush. Rainfall intensity (with respect to the rest of the event) that produces 10% to 20% runoff volume play an important role in defining the magnitude of the first flush. Events can demonstrate high magnitude first flush when the rainfall intensity occurring between 10% and 20% of the runoff volume is comparatively high while low rainfall intensities during this period produces low magnitude first flush. For events with first flush, the phenomenon is clearly visible up to 40% of the runoff volume. This contradicts the common definition that first flush only exists, if for example, 80% of the pollutant mass is transported in the first 30% of runoff volume. First flush behaviour for TN is different compared to TSS and TP. Apart from rainfall characteristics, the composition and the availability of TN on the catchment also play an important role in first flush. The analysis confirmed that events with low rainfall intensity can produce high magnitude first flush for the dissolved fraction of TN, while high rainfall intensity produce low dissolved TN first flush. This is attributed to the source limiting behaviour of dissolved TN wash-off where there is high wash-off during the initial part of a rainfall event irrespective of the intensity. However, for particulate TN, the influence of rainfall intensity on first flush characteristics is similar to TSS and TP. The data analysis also confirmed that first flush can occur as high magnitude first flush, low magnitude first flush or non existence of first flush. Investigation of the influence of catchment characteristics on first flush found that the key factors that influence the phenomenon are the location of the pollutant source, spatial distribution of the pervious and impervious surfaces in the catchment, drainage network layout and slope of the catchment. This confirms that first flush phenomenon cannot be evaluated based on a single or a limited set of parameters as a number of catchment characteristics should be taken into account. Catchments where the pollutant source is located close to the outlet, a high fraction of road surfaces, short travel time to the outlet, with steep slopes can produce high wash-off load during the first 50% of the runoff volume. Rainfall characteristics have a comparatively dominant impact on the wash-off process compared to the catchment characteristics. In addition, the pollutant characteristics also should be taken into account in designing stormwater treatment systems due to different wash-off behaviour. Analysis outcomes confirmed that there is a high TSS load during the first 20% of the runoff volume followed by TN which can extend up to 30% of the runoff volume. In contrast, high TP load can exist during the initial and at the end part of a rainfall event. This is related to the composition of TP available for the wash-off.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: There is currently no early predictive marker of survival for patients receiving chemotherapy for malignant pleural mesothelioma (MPM). Tumour response may be predictive for overall survival (OS), though this has not been explored. We have thus undertaken a combined-analysis of OS, from a 42 day landmark, of 526 patients receiving systemic therapy for MPM. We also validate published progression-free survival rates (PFSRs) and a progression-free survival (PFS) prognostic-index model. Methods: Analyses included nine MPM clinical trials incorporating six European Organisation for Research and Treatment of Cancer (EORTC) studies. Analysis of OS from landmark (from day 42 post-treatment) was considered regarding tumour response. PFSR analysis data included six non-EORTC MPM clinical trials. Prognostic index validation was performed on one non-EORTC data-set, with available survival data. Results: Median OS, from landmark, of patients with partial response (PR) was 12·8 months, stable disease (SD), 9·4 months and progressive disease (PD), 3·4 months. Both PR and SD were associated with longer OS from landmark compared with disease progression (both p < 0·0001). PFSRs for platinum-based combination therapies were consistent with published significant clinical activity ranges. Effective separation between PFS and OS curves provided a validation of the EORTC prognostic model, based on histology, stage and performance status. Conclusion: Response to chemotherapy is associated with significantly longer OS from landmark in patients with MPM. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ability to identify and assess user engagement with transmedia productions is vital to the success of individual projects and the sustainability of this mode of media production as a whole. It is essential that industry players have access to tools and methodologies that offer the most complete and accurate picture of how audiences/users engage with their productions and which assets generate the most valuable returns of investment. Drawing upon research conducted with Hoodlum Entertainment, a Brisbane-based transmedia producer, this project involved an initial assessment of the way engagement tends to be understood, why standard web analytics tools are ill-suited to measuring it, how a customised tool could offer solutions, and why this question of measuring engagement is so vital to the future of transmedia as a sustainable industry. Working with data provided by Hoodlum Entertainment and Foxtel Marketing, the outcome of the study was a prototype for a custom data visualisation tool that allowed access, manipulation and presentation of user engagement data, both historic and predictive. The prototyped interfaces demonstrate how the visualization tool would collect and organise data specific to multiplatform projects by aggregating data across a number of platform reporting tools. Such a tool is designed to encompass not only platforms developed by the transmedia producer but also sites developed by fans. This visualisation tool accounted for multiplatform experience projects whose top level is comprised of people, platforms and content. People include characters, actors, audience, distributors and creators. Platforms include television, Facebook and other relevant social networks, literature, cinema and other media that might be included in the multiplatform experience. Content refers to discreet media texts employed within the platform, such as tweet, a You Tube video, a Facebook post, an email, a television episode, etc. Core content is produced by the creators’ multiplatform experiences to advance the narrative, while complimentary content generated by audience members offers further contributions to the experience. Equally important is the timing with which the components of the experience are introduced and how they interact with and impact upon each other. Being able to combine, filter and sort these elements in multiple ways we can better understand the value of certain components of a project. It also offers insights into the relationship between the timing of the release of components and user activity associated with them, which further highlights the efficacy (or, indeed, failure) of assets as catalysts for engagement. In collaboration with Hoodlum we have developed a number of design scenarios experimenting with the ways in which data can be visualised and manipulated to tell a more refined story about the value of user engagement with certain project components and activities. This experimentation will serve as the basis for future research.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background The implementation of the Australian Consumer Law in 2011 highlighted the need for better use of injury data to improve the effectiveness and responsiveness of product safety (PS) initiatives. In the PS system, resources are allocated to different priority issues using risk assessment tools. The rapid exchange of information (RAPEX) tool to prioritise hazards, developed by the European Commission, is currently being adopted in Australia. Injury data is required as a basic input to the RAPEX tool in the risk assessment process. One of the challenges in utilising injury data in the PS system is the complexity of translating detailed clinical coded data into broad categories such as those used in the RAPEX tool. Aims This study aims to translate hospital burns data into a simplified format by mapping the International Statistical Classification of Disease and Related Health Problems (Tenth Revision) Australian Modification (ICD-10-AM) burn codes into RAPEX severity rankings, using these rankings to identify priority areas in childhood product-related burns data. Methods ICD-10-AM burn codes were mapped into four levels of severity using the RAPEX guide table by assigning rankings from 1-4, in order of increasing severity. RAPEX rankings were determined by the thickness and surface area of the burn (BSA) with information extracted from the fourth character of T20-T30 codes for burn thickness, and the fourth and fifth characters of T31 codes for the BSA. Following the mapping process, secondary data analysis of 2008-2010 Queensland Hospital Admitted Patient Data Collection (QHAPDC) paediatric data was conducted to identify priority areas in product-related burns. Results The application of RAPEX rankings in QHAPDC burn data showed approximately 70% of paediatric burns in Queensland hospitals were categorised under RAPEX levels 1 and 2, 25% under RAPEX 3 and 4, with the remaining 5% unclassifiable. In the PS system, prioritisations are made to issues categorised under RAPEX levels 3 and 4. Analysis of external cause codes within these levels showed that flammable materials (for children aged 10-15yo) and hot substances (for children aged <2yo) were the most frequently identified products. Discussion and conclusions The mapping of ICD-10-AM burn codes into RAPEX rankings showed a favourable degree of compatibility between both classification systems, suggesting that ICD-10-AM coded burn data can be simplified to more effectively support PS initiatives. Additionally, the secondary data analysis showed that only 25% of all admitted burn cases in Queensland were severe enough to trigger a PS response.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background The implementation of the Australian Consumer Law in 2011 highlighted the need for better use of injury data to improve the effectiveness and responsiveness of product safety (PS) initiatives. In the PS system, resources are allocated to different priority issues using risk assessment tools. The rapid exchange of information (RAPEX) tool to prioritise hazards, developed by the European Commission, is currently being adopted in Australia. Injury data is required as a basic input to the RAPEX tool in the risk assessment process. One of the challenges in utilising injury data in the PS system is the complexity of translating detailed clinical coded data into broad categories such as those used in the RAPEX tool. Aims This study aims to translate hospital burns data into a simplified format by mapping the International Statistical Classification of Disease and Related Health Problems (Tenth Revision) Australian Modification (ICD-10-AM) burn codes into RAPEX severity rankings, using these rankings to identify priority areas in childhood product-related burns data. Methods ICD-10-AM burn codes were mapped into four levels of severity using the RAPEX guide table by assigning rankings from 1-4, in order of increasing severity. RAPEX rankings were determined by the thickness and surface area of the burn (BSA) with information extracted from the fourth character of T20-T30 codes for burn thickness, and the fourth and fifth characters of T31 codes for the BSA. Following the mapping process, secondary data analysis of 2008-2010 Queensland Hospital Admitted Patient Data Collection (QHAPDC) paediatric data was conducted to identify priority areas in product-related burns. Results The application of RAPEX rankings in QHAPDC burn data showed approximately 70% of paediatric burns in Queensland hospitals were categorised under RAPEX levels 1 and 2, 25% under RAPEX 3 and 4, with the remaining 5% unclassifiable. In the PS system, prioritisations are made to issues categorised under RAPEX levels 3 and 4. Analysis of external cause codes within these levels showed that flammable materials (for children aged 10-15yo) and hot substances (for children aged <2yo) were the most frequently identified products. Discussion and conclusions The mapping of ICD-10-AM burn codes into RAPEX rankings showed a favourable degree of compatibility between both classification systems, suggesting that ICD-10-AM coded burn data can be simplified to more effectively support PS initiatives. Additionally, the secondary data analysis showed that only 25% of all admitted burn cases in Queensland were severe enough to trigger a PS response.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Within the QUT Business School (QUTBS)– researchers across economics, finance and accounting depend on data driven research. They analyze historic and global financial data across a range of instruments to understand the relationships and effects between them as they respond to news and events in their region. Scholars and Higher Degree Research Students in turn seek out universities which offer these particular datasets to further their research. This involves downloading and manipulating large datasets, often with a focus on depth of detail, frequency and long tail historical data. This is stock exchange data and has potential commercial value therefore the license for access tends to be very expensive. This poster reports the following findings: •The library has a part to play in freeing up researchers from the burden of negotiating subscriptions, fundraising and managing the legal requirements around license and access. •The role of the library is to communicate the nature and potential of these complex resources across the university to disciplines as diverse as Mathematics, Health, Information Systems and Creative Industries. •Has demonstrated clear concrete support for research by QUT Library and built relationships into faculty. It has made data available to all researchers and attracted new HDRs. The aim is to reach the output threshold of research outputs to submit into FOR Code 1502 (Banking, Finance and Investment) for ERA 2015. •It is difficult to identify what subset of dataset will be obtained given somewhat vague price tiers. •The integrity of data is variable as it is limited by the way it is collected, this occasionally raises issues for researchers(Cook, Campbell, & Kelly, 2012) •Improved library understanding of the content of our products and the nature of financial based research is a necessary part of the service.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Acoustic sensing is a promising approach to scaling faunal biodiversity monitoring. Scaling the analysis of audio collected by acoustic sensors is a big data problem. Standard approaches for dealing with big acoustic data include automated recognition and crowd based analysis. Automatic methods are fast at processing but hard to rigorously design, whilst manual methods are accurate but slow at processing. In particular, manual methods of acoustic data analysis are constrained by a 1:1 time relationship between the data and its analysts. This constraint is the inherent need to listen to the audio data. This paper demonstrates how the efficiency of crowd sourced sound analysis can be increased by an order of magnitude through the visual inspection of audio visualized as spectrograms. Experimental data suggests that an analysis speedup of 12× is obtainable for suitable types of acoustic analysis, given that only spectrograms are shown.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A spatial process observed over a lattice or a set of irregular regions is usually modeled using a conditionally autoregressive (CAR) model. The neighborhoods within a CAR model are generally formed deterministically using the inter-distances or boundaries between the regions. An extension of CAR model is proposed in this article where the selection of the neighborhood depends on unknown parameter(s). This extension is called a Stochastic Neighborhood CAR (SNCAR) model. The resulting model shows flexibility in accurately estimating covariance structures for data generated from a variety of spatial covariance models. Specific examples are illustrated using data generated from some common spatial covariance functions as well as real data concerning radioactive contamination of the soil in Switzerland after the Chernobyl accident.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Environmental monitoring is becoming critical as human activity and climate change place greater pressures on biodiversity, leading to an increasing need for data to make informed decisions. Acoustic sensors can help collect data across large areas for extended periods making them attractive in environmental monitoring. However, managing and analysing large volumes of environmental acoustic data is a great challenge and is consequently hindering the effective utilization of the big dataset collected. This paper presents an overview of our current techniques for collecting, storing and analysing large volumes of acoustic data efficiently, accurately, and cost-effectively.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background Heatwaves could cause the population excess death numbers to be ranged from tens to thousands within a couple of weeks in a local area. An excess mortality due to a special event (e.g., a heatwave or an epidemic outbreak) is estimated by subtracting the mortality figure under ‘normal’ conditions from the historical daily mortality records. The calculation of the excess mortality is a scientific challenge because of the stochastic temporal pattern of the daily mortality data which is characterised by (a) the long-term changing mean levels (i.e., non-stationarity); (b) the non-linear temperature-mortality association. The Hilbert-Huang Transform (HHT) algorithm is a novel method originally developed for analysing the non-linear and non-stationary time series data in the field of signal processing, however, it has not been applied in public health research. This paper aimed to demonstrate the applicability and strength of the HHT algorithm in analysing health data. Methods Special R functions were developed to implement the HHT algorithm to decompose the daily mortality time series into trend and non-trend components in terms of the underlying physical mechanism. The excess mortality is calculated directly from the resulting non-trend component series. Results The Brisbane (Queensland, Australia) and the Chicago (United States) daily mortality time series data were utilized for calculating the excess mortality associated with heatwaves. The HHT algorithm estimated 62 excess deaths related to the February 2004 Brisbane heatwave. To calculate the excess mortality associated with the July 1995 Chicago heatwave, the HHT algorithm needed to handle the mode mixing issue. The HHT algorithm estimated 510 excess deaths for the 1995 Chicago heatwave event. To exemplify potential applications, the HHT decomposition results were used as the input data for a subsequent regression analysis, using the Brisbane data, to investigate the association between excess mortality and different risk factors. Conclusions The HHT algorithm is a novel and powerful analytical tool in time series data analysis. It has a real potential to have a wide range of applications in public health research because of its ability to decompose a nonlinear and non-stationary time series into trend and non-trend components consistently and efficiently.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Time series classification has been extensively explored in many fields of study. Most methods are based on the historical or current information extracted from data. However, if interest is in a specific future time period, methods that directly relate to forecasts of time series are much more appropriate. An approach to time series classification is proposed based on a polarization measure of forecast densities of time series. By fitting autoregressive models, forecast replicates of each time series are obtained via the bias-corrected bootstrap, and a stationarity correction is considered when necessary. Kernel estimators are then employed to approximate forecast densities, and discrepancies of forecast densities of pairs of time series are estimated by a polarization measure, which evaluates the extent to which two densities overlap. Following the distributional properties of the polarization measure, a discriminant rule and a clustering method are proposed to conduct the supervised and unsupervised classification, respectively. The proposed methodology is applied to both simulated and real data sets, and the results show desirable properties.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This project recognized lack of data analysis and travel time prediction on arterials as the main gap in the current literature. For this purpose it first investigated reliability of data gathered by Bluetooth technology as a new cost effective method for data collection on arterial roads. Then by considering the similarity among varieties of daily travel time on different arterial routes, created a SARIMA model to predict future travel time values. Based on this research outcome, the created model can be applied for online short term travel time prediction in future.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Traffic incidents are key contributors to non-recurrent congestion, potentially generating significant delay. Factors that influence the duration of incidents are important to understand so that effective mitigation strategies can be implemented. To identify and quantify the effects of influential factors, a methodology for studying total incident duration based on historical data from an ‘integrated database’ is proposed. Incident duration models are developed using a selected freeway segment in the Southeast Queensland, Australia network. The models include incident detection and recovery time as components of incident duration. A hazard-based duration modelling approach is applied to model incident duration as a function of a variety of factors that influence traffic incident duration. Parametric accelerated failure time survival models are developed to capture heterogeneity as a function of explanatory variables, with both fixed and random parameters specifications. The analysis reveals that factors affecting incident duration include incident characteristics (severity, type, injury, medical requirements, etc.), infrastructure characteristics (roadway shoulder availability), time of day, and traffic characteristics. The results indicate that event type durations are uniquely different, thus requiring different responses to effectively clear them. Furthermore, the results highlight the presence of unobserved incident duration heterogeneity as captured by the random parameter models, suggesting that additional factors need to be considered in future modelling efforts.