785 resultados para HIGH-INTENSITY EXERCISE
Resumo:
Morgan, Huw; Habbal, S. R., 'The impact of sunspots on the interpretation of coronal observations of the OVI doublet', The Astrophysical Journal (2005) 630(2) pp.L189-L192 RAE2008
Resumo:
The deposition of ultrasonic energy in tissue can cause tissue damage due to local heating. For pressures above a critical threshold, cavitation will occur in tissue and bubbles will be created. These oscillating bubbles can induce a much larger thermal energy deposition in the local region. Traditionally, clinicians and researchers have not exploited this bubble-enhanced heating since cavitation behavior is erratic and very difficult to control. The present work is an attempt to control and utilize this bubble-enhanced heating. First, by applying appropriate bubble dynamic models, limits on the asymptotic bubble size distribution are obtained for different driving pressures at 1 MHz. The size distributions are bounded by two thresholds: the bubble shape instability threshold and the rectified diffusion threshold. The growth rate of bubbles in this region is also given, and the resulting time evolution of the heating in a given insonation scenario is modeled. In addition, some experimental results have been obtained to investigate the bubble-enhanced heating in an agar and graphite based tissue- mimicking material. Heating as a function of dissolved gas concentrations in the tissue phantom is investigated. Bubble-based contrast agents are introduced to investigate the effect on the bubble-enhanced heating, and to control the initial bubble size distribution. The mechanisms of cavitation-related bubble heating are investigated, and a heating model is established using our understanding of the bubble dynamics. By fitting appropriate bubble densities in the ultrasound field, the peak temperature changes are simulated. The results for required bubble density are given. Finally, a simple bubbly liquid model is presented to estimate the shielding effects which may be important even for low void fraction during high intensity focused ultrasound (HIFU) treatment.
THE ROLE OF ACOUSTIC CAVITATION IN ENHANCED ULTRASOUND-INDUCED HEATING IN A TISSUE-MIMICKING PHANTOM
Resumo:
A complete understanding of high-intensity focused ultrasound-induced temperature changes in tissue requires insight into all potential mechanisms for heat deposition. Applications of therapeutic ultrasound often utilize acoustic pressures capable of producing cavitation activity. Recognizing the ability of bubbles to transfer acoustic energy into heat generation, a study of the role bubbles play in tissue hyperthermia becomes necessary. These bubbles are typically less than 50μm. This dissertation examines the contribution of bubbles and their motion to an enhanced heating effect observed in a tissue-mimicking phantom. A series of experiments established a relationship between bubble activity and an enhanced temperature rise in the phantom by simultaneously measuring both the temperature change and acoustic emissions from bubbles. It was found that a strong correlation exists between the onset of the enhanced heating effect and observable cavitation activity. In addition, the likelihood of observing the enhanced heating effect was largely unaffected by the insonation duration for all but the shortest of insonation times, 0.1 seconds. Numerical simulations were used investigate the relative importance of two candidate mechanisms for heat deposition from bubbles as a means to quantify the number of bubbles required to produce the enhanced temperature rise. The energy deposition from viscous dissipation and the absorption of radiated sound from bubbles were considered as a function of the bubble size and the viscosity of the surrounding medium. Although both mechanisms were capable of producing the level of energy required for the enhanced heating effect, it was found that inertial cavitation, associated with high acoustic radiation and low viscous dissipation, coincided with the the nature of the cavitation best detected by the experimental system. The number of bubbles required to account for the enhanced heating effect was determined through the numerical study to be on the order of 150 or less.
Resumo:
High intensity focused ultrasound (HIFU) can be used to control bleeding, both from individual blood vessels as well as from gross damage to the capillary bed. This process, called acoustic hemostasis, is being studied in the hope that such a method would ultimately provide a lifesaving treatment during the so-called "golden hour", a brief grace period after a severe trauma in which prompt therapy can save the life of an injured person. Thermal effects play a major role in occlusion of small vessels and also appear to contribute to the sealing of punctures in major blood vessels. However, aggressive ultrasound-induced tissue heating can also impact healthy tissue and can lead to deleterious mechanical bioeffects. Moreover, the presence of vascularity can limit one’s ability to elevate the temperature of blood vessel walls owing to convective heat transport. In an effort to better understand the heating process in tissues with vascular structure we have developed a numerical simulation that couples models for ultrasound propagation, acoustic streaming, ultrasound heating and blood cooling in Newtonian viscous media. The 3-D simulation allows for the study of complicated biological structures and insonation geometries. We have also undertaken a series of in vitro experiments, in non-uniform flow-through tissue phantoms, designed to provide a ground truth verification of the model predictions. The calculated and measured results were compared over a range of values for insonation pressure, insonation time, and flow rate; we show good agreement between predictions and measurements. We then conducted a series of simulations that address two limiting problems of interest: hemostasis in small and large vessels. We employed realistic human tissue properties and considered more complex geometries. Results show that the heating pattern in and around a blood vessel is different for different vessel sizes, flow rates and for varying beam orientations relative to the flow axis. Complete occlusion and wall- puncture sealing are both possible depending on the exposure conditions. These results concur with prior clinical observations and may prove useful for planning of a more effective procedure in HIFU treatments.
Resumo:
Acousto-optic (AO) sensing and imaging (AOI) is a dual-wave modality that combines ultrasound with diffusive light to measure and/or image the optical properties of optically diffusive media, including biological tissues such as breast and brain. The light passing through a focused ultrasound beam undergoes a phase modulation at the ultrasound frequency that is detected using an adaptive interferometer scheme employing a GaAs photorefractive crystal (PRC). The PRC-based AO system operating at 1064 nm is described, along with the underlying theory, validating experiments, characterization, and optimization of this sensing and imaging apparatus. The spatial resolution of AO sensing, which is determined by spatial dimensions of the ultrasound beam or pulse, can be sub-millimeter for megahertz-frequency sound waves.A modified approach for quantifying the optical properties of diffuse media with AO sensing employs the ratio of AO signals generated at two different ultrasound focal pressures. The resulting “pressure contrast signal” (PCS), once calibrated for a particular set of pressure pulses, yields a direct measure of the spatially averaged optical transport attenuation coefficient within the interaction volume between light and sound. This is a significant improvement over current AO sensing methods since it produces a quantitative measure of the optical properties of optically diffuse media without a priori knowledge of the background illumination. It can also be used to generate images based on spatial variations in both optical scattering and absorption. Finally, the AO sensing system is modified to monitor the irreversible optical changes associated with the tissue heating from high intensity focused ultrasound (HIFU) therapy, providing a powerful method for noninvasively sensing the onset and growth of thermal lesions in soft tissues. A single HIFU transducer is used to simultaneously generate tissue damage and pump the AO interaction. Experimental results performed in excised chicken breast demonstrate that AO sensing can identify the onset and growth of lesion formation in real time and, when used as feedback to guide exposure parameters, results in more predictable lesion formation.
Resumo:
This dissertation describes a model for acoustic propagation in inhomogeneous flu- ids, and explores the focusing by arrays onto targets under various conditions. The work explores the use of arrays, in particular the time reversal array, for underwater and biomedical applications. Aspects of propagation and phasing which can lead to reduced focusing effectiveness are described. An acoustic wave equation was derived for the propagation of finite-amplitude waves in lossy time-varying inhomogeneous fluid media. The equation was solved numerically in both Cartesian and cylindrical geometries using the finite-difference time-domain (FDTD) method. It was found that time reversal arrays are sensitive to several debilitating factors. Focusing ability was determined to be adequate in the presence of temporal jitter in the time reversed signal only up to about one-sixth of a period. Thermoviscous absorption also had a debilitating effect on focal pressure for both linear and nonlinear propagation. It was also found that nonlinearity leads to degradation of focal pressure through amplification of the received signal at the array, and enhanced absorption in the shocked waveforms. This dissertation also examined the heating effects of focused ultrasound in a tissue-like medium. The application considered is therapeutic heating for hyperther- mia. The acoustic model and a thermal model for tissue were coupled to solve for transient and steady temperature profiles in tissue-like media. The Pennes bioheat equation was solved using the FDTD method to calculate the temperature fields in tissue-like media from focused acoustic sources. It was found that the temperature-dependence of the medium's background prop- erties can play an important role in the temperature predictions. Finite-amplitude effects contributed excess heat when source conditions were provided for nonlinear ef- fects to manifest themselves. The effect of medium heterogeneity was also found to be important in redistributing the acoustic and temperature fields, creating regions with hotter and colder temperatures than the mean by local scattering and lensing action. These temperature excursions from the mean were found to increase monotonically with increasing contrast in the medium's properties.
Resumo:
This study found that natural community supports were comprised of two distinct groupings; firstly immediate families, friends and peer support groups; secondly neighbours and local community groups such as sporting and activity- based organisations and groups. The findings of this study indicate that living with acquired brain injury involves a process where the person moves from acute high intensity health services onto rehabilitative services and then onto re-establishing independent lives. It is evident that smooth transitions and interconnectivity of services are essential in facilitating this recovery process. Instrumental to the recovery is the support of immediate family and close friends, who form people’s immediate natural support network and go a long way towards facilitating individuals in rebuilding their lives. A key finding of this study is that broader natural community supports do not appear to play as central a role in supporting individuals to live independent lives when compared to the role of family and friends. The lack of involvement of broader community groups, in many ways, prompted individuals to contact formal support services. For the majority of participants, independence is facilitated through the combination of immediate natural community supports and formal services. The role of formal support services is key to developing broader community support networks. This study found a blurred division between formal services and broader community support networks. The authors recommended that the role of formal supports services in acting as a bridge between the needs of the individual and the development of meaningful community networks, be formally recognised and further developed. Additionally, they argued that the importance of the role of broader natural community, supports such as those provided by community and sporting groups must be enhanced. Greater awareness of the issues faced by people living with acquired brain injury and its often invisible nature is necessary in this endeavour. The authors stated it is important to recognise that there are multiple issues impacting on independent living and these issues intersect, for instance with age, gender, employment, qualifications and so on. A lack of public awareness of acquired brain injury was found to be a key barrier to independent living, along with issues relating to socialising, access to employment and finances. The findings of this study reflect the complexities of living with acquired brain injury and the need for holistic support that is cognisant of the factors which impact on integration. It is vital that flexible, personalised services are developed which are fit for purpose and meet the needs of not only people with acquired brain injury but also their immediate natural community support network. Recognition of the intersection between immediate/ broader natural community supports and formal services is also key to developing the comprehensive and practical supports required to achieve an independent life. This was a qualitative study and all participants were sourced through Headway, a community based service provider for people with ABI. Data collection was divided into two stages: firstly focus groups, followed by individual interviews. Four focus groups were convened in Cork (2), Dublin (1) and Limerick (1). Each focus group was facilitated by at least two members of the research team and a total of twenty-six individuals participated in the focus groups. Thematic analysis of the data was undertaken to guide and inform the second stage of the study; the individual interviews. Ten interviews were undertaken with individuals who presented with ABI in the Cork and Limerick regions.
Resumo:
Earth's surface is rapidly urbanizing, resulting in dramatic changes in the abundance, distribution and character of surface water features in urban landscapes. However, the scope and consequences of surface water redistribution at broad spatial scales are not well understood. We hypothesized that urbanization would lead to convergent surface water abundance and distribution: in other words, cities will gain or lose water such that they become more similar to each other than are their surrounding natural landscapes. Using a database of more than 1 million water bodies and 1 million km of streams, we compared the surface water of 100 US cities with their surrounding undeveloped land. We evaluated differences in areal (A WB) and numeric densities (N WB) of water bodies (lakes, wetlands, and so on), the morphological characteristics of water bodies (size), and the density (D C) of surface flow channels (that is, streams and rivers). The variance of urban A WB, N WB, and D C across the 100 MSAs decreased, by 89, 25, and 71%, respectively, compared to undeveloped land. These data show that many cities are surface water poor relative to undeveloped land; however, in drier landscapes urbanization increases the occurrence of surface water. This convergence pattern strengthened with development intensity, such that high intensity urban development had an areal water body density 98% less than undeveloped lands. Urbanization appears to drive the convergence of hydrological features across the US, such that surface water distributions of cities are more similar to each other than to their surrounding landscapes. © 2014 The Author(s).
Resumo:
The intensity and valence of 30 emotion terms, 30 events typical of those emotions, and 30 autobiographical memories cued by those emotions were each rated by different groups of 40 undergraduates. A vector model gave a consistently better account of the data than a circumplex model, both overall and in the absence of high-intensity, neutral valence stimuli. The Positive Activation - Negative Activation (PANA) model could be tested at high levels of activation, where it is identical to the vector model. The results replicated when ratings of arousal were used instead of ratings of intensity for the events and autobiographical memories. A reanalysis of word norms gave further support for the vector and PANA models by demonstrating that neutral valence, high-arousal ratings resulted from the averaging of individual positive and negative valence ratings. Thus, compared to a circumplex model, vector and PANA models provided overall better fits.
Resumo:
Fear conditioning is an established model for investigating posttraumatic stress disorder (PTSD). However, symptom triggers may vaguely resemble the initial traumatic event, differing on a variety of sensory and affective dimensions. We extended the fear-conditioning model to assess generalization of conditioned fear on fear processing neurocircuitry in PTSD. Military veterans (n=67) consisting of PTSD (n=32) and trauma-exposed comparison (n=35) groups underwent functional magnetic resonance imaging during fear conditioning to a low fear-expressing face while a neutral face was explicitly unreinforced. Stimuli that varied along a neutral-to-fearful continuum were presented before conditioning to assess baseline responses, and after conditioning to assess experience-dependent changes in neural activity. Compared with trauma-exposed controls, PTSD patients exhibited greater post-study memory distortion of the fear-conditioned stimulus toward the stimulus expressing the highest fear intensity. PTSD patients exhibited biased neural activation toward high-intensity stimuli in fusiform gyrus (P<0.02), insula (P<0.001), primary visual cortex (P<0.05), locus coeruleus (P<0.04), thalamus (P<0.01), and at the trend level in inferior frontal gyrus (P=0.07). All regions except fusiform were moderated by childhood trauma. Amygdala-calcarine (P=0.01) and amygdala-thalamus (P=0.06) functional connectivity selectively increased in PTSD patients for high-intensity stimuli after conditioning. In contrast, amygdala-ventromedial prefrontal cortex (P=0.04) connectivity selectively increased in trauma-exposed controls compared with PTSD patients for low-intensity stimuli after conditioning, representing safety learning. In summary, fear generalization in PTSD is biased toward stimuli with higher emotional intensity than the original conditioned-fear stimulus. Functional brain differences provide a putative neurobiological model for fear generalization whereby PTSD symptoms are triggered by threat cues that merely resemble the index trauma.
Resumo:
The presented numerical modelling for the magnetic levitation involves coupling of the electromagnetic field, liquid shape change, fluid velocities and the temperature field at every time step during the simulation in time evolution. Combination of the AC and DC magnetic fields can be used to achieve high temperature, stable levitation conditions. The oscillation frequency spectra are analysed for droplets levitated in AC and DC magnetic fields at various combinations. An electrically poorly conducting, diamagnetic droplet (e.g. water) can be stably levitated using the dia- and para-magnetic properties of the sample material in a high intensity, gradient DC field.
Resumo:
The high-intensity, high-resolution x-ray source at the European Synchrotron Radiation Facility (ESRF) has been used in x-ray diffraction (XRD) experiments to detect intermetallic compounds (IMCs) in lead-free solder bumps. The IMCs found in 95.5Sn3.8Ag0.7Cu solder bumps on Cu pads with electroplated-nickel immersion-gold (ENIG) surface finish are consistent with results based on traditional destructive methods. Moreover, after positive identification of the IMCs from the diffraction data, spatial distribution plots over the entire bump were obtained. These spatial distributions for selected intermetallic phases display the layer thickness and confirm the locations of the IMCs. For isothermally aged solder samples, results have shown that much thicker layers of IMCs have grown from the pad interface into the bulk of the solder. Additionally, the XRD technique has also been used in a temperature-resolved mode to observe the formation of IMCs, in situ, during the solidification of the solder joint. The results demonstrate that the XRD technique is very attractive as it allows for nondestructive investigations to be performed on expensive state-of-the-art electronic components, thereby allowing new, lead-free materials to be fully characterized.
Resumo:
Digital avionics systems are increasingly under threat from external electromagnetic interference (EMI). The same avionics systems require a thermal cooling mechanism and one method of providing this is to mount an air vent on the body of the aircraft. For the first time, a nacelle-mounted air vent that may expose the flight critical full authority digital engine controller (FADEC) to high intensity radiated fields (HIRF) is examined. The reflection/transmission characteristics of the vent are reported and the current shielding method employed is shown to provide a low shielding level (5 dB at 18 GHz). A new design has been proposed, providing over 100 dB of attenuation at 18 GHz. To the authors' knowledge this is the first time this shielding method has been applied to aircraft air vents.
Resumo:
Objectives: To describe the use of physiotherapy services and alternative therapies by a population of children with moderate to severe cerebral palsy (CP).
Design: Descriptive cross-sectional survey.
Subjects: A total of 212 parents of children aged 4–14 years with moderate to severe CP were identified from the Northern Ireland Cerebral Palsy Register (NICPR) and a random subsample of their paediatric physiotherapists.
Main measures: A standardized description of motor impairment or assessment form; a postal questionnaire to parents and paediatric physiotherapists (to validate parents’ reports of service use).
Response rates: In total, 85% of parent questionnaires were returned and 100% of paediatric physiotherapists responded.
Results: Service use among families was high; on average the families had contact with approximately seven services in a 6-month time interval. The overwhelming majority of children (96%) received physiotherapy during the school term and most (59%) received treatment at least twice a week for 30 min; 43% of children had their physiotherapy discontinued over the summer holidays. Over one-quarter (28%) of families had opted out of the NHS and bought alternatives like conductive education (21%) or private forms of conventional physiotherapy (16%). Children with more severe forms of CP, in special education, particularly at schools for physical disability, were high-intensity users of the physiotherapy service. Despite this, 74% of parents wanted more physiotherapy for their child.
Conclusions and implications: The demand for physiotherapy services is likely to continue given the relatively stable prevalence rate of CP, the proportion of children with disabling CP and the level of parent interest in the service. A number of quality aspects and gaps in the service have been identified.
Resumo:
We present a numerical and theoretical study of intense-field single-electron ionization of helium at 390 nm and 780 nm. Accurate ionization rates (over an intensity range of (0.175-34) X10^14 W/ cm^2 at 390 nm, and (0.275 - 14.4) X 10^14 W /cm^2 at 780 nm) are obtained from full-dimensionality integrations of the time-dependent helium-laser Schroedinger equation. We show that the power law of lowest order perturbation theory, modified with a ponderomotive-shifted ionization potential, is capable of modelling the ionization rates over an intensity range that extends up to two orders of magnitude higher than that applicable to perturbation theory alone. Writing the modified perturbation theory in terms of scaled wavelength and intensity variables, we obtain to first approximation a single ionization law for both the 390 nm and 780 nm cases. To model the data in the high intensity limit as well as in the low, a new function is introduced for the rate. This function has, in part, a resemblance to that derived from tunnelling theory but, importantly, retains the correct frequency-dependence and scaling behaviour derived from the perturbative-like models at lower intensities. Comparison with the predictions of classical ADK tunnelling theory confirms that ADK performs poorly in the frequency and intensity domain treated here.