918 resultados para HIGH PRESSURE


Relevância:

70.00% 70.00%

Publicador:

Resumo:

High pressure NMR spectroscopy has developed into an important tool for studying conformational equilibria of proteins in solution. We have studied the amide proton and nitrogen chemical shifts of the 20 canonical amino acids X in the random-coil model peptide Ac-Gly-Gly-X-Ala-NH2, in a pressure range from 0.1 to 200 MPa, at a proton resonance frequency of 800 MHz. The obtained data allowed the determination of first and second order pressure coefficients with high accuracy at 283 K and pH 6.7. The mean first and second order pressure coefficients <B-1(15N)> and <B-2(15N)> for nitrogen are 2.91 ppm/GPa and -2.32 ppm/GPa(2), respectively. The corresponding values <B-1(1H)> and <B-2(1H)> for the amide protons are 0.52 ppm/GPa and -0.41 ppm/GPa(2). Residual dependent (1)J(1H15N)-coupling constants are shown.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ionic liquids based on 1-alkyl-3-methylimidazolium cations and the hydrogen sulfate (or bisulfate) anion, HSO4-, are much more viscous than ionic liquids with alkyl sulfates, RSO4-. The structural origin of the high viscosity of HSO4- ionic liquids is unraveled from detailed comparison of the anion Raman bands in 1-ethyl-3-methylimidazolium hydrogen sulfate and 1-butyl-3-methylimidazolium hydrogen sulfate with available data for simple HSO(4)(-) salts in crystalline phase, molten phase, and aqueous solution. Two Raman bands at 1046 and 1010 cm(-1) have been assigned as symmetric stretching modes nu(s)(S = O) of HSO4-, the latter being characteristic of chains of hydrogen-bonded anions. The intensity of this component increases in the supercooled liquid phase. For comparison purposes, Raman spectra of 1-ethyl-3-methylimidazolium ethyl sulfate and 1-butyl-3-methylimidazolium methyl sulfate have been also obtained. There is no indication of difference in the strength of hydrogen bond interactions of imidazolium cations with HSO4- or RSO4- anions. Raman spectra at high pressures, up to 2.6 GPa, are also discussed. Raman spectroscopy provides evidence that hydrogen-bonded anions resulting in anion-anion interaction is the reason for the high viscosity of imidazolium ionic liquids with HSO4-. If the ionic liquid is exposed to moisture, these structures are disrupted upon absorption of water from the atmosphere.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis is concerned with in-situ time-, temperature- and pressure-resolved synchrotron X-ray powder diffraction investigations of a variety of inorganic compounds with twodimensional layer structures and three-dimensional framework structures. In particular, phase stability, reaction kinetics, thermal expansion and compressibility at non-ambient conditions has been studied for 1) Phosphates with composition MIV(HPO4)2·nH2O (MIV = Ti, Zr); 2) Pyrophosphates and pyrovanadates with composition MIVX2O7 (MIV = Ti, Zr and X = P, V); 3) Molybdates with composition ZrMo2O8. The results are compiled in seven published papers and two manuscripts. Reaction kinetics for the hydrothermal synthesis of α-Ti(HPO4)2·H2O and intercalation of alkane diamines in α-Zr(HPO4)2·H2O was studied using time-resolved experiments. In the high-temperature transformation of γ-Ti(PO4)(H2PO4)·2H2O to TiP2O7 three intermediate phases, γ'-Ti(PO4)(H2PO4)·(2-x)H2O, β-Ti(PO4)(H2PO4) and Ti(PO4)(H2P2O7)0.5 were found to crystallise at 323, 373 and 748 K, respectively. A new tetragonal three-dimensional phosphate phase called τ-Zr(HPO4)2 was prepared, and subsequently its structure was determined and refined using the Rietveld method. In the high-temperature transformation from τ-Zr(HPO4)2 to cubic α-ZrP2O7 two new orthorhombic intermediate phases were found. The first intermediate phase, ρ-Zr(HPO4)2, forms at 598 K, and the second phase, β-ZrP2O7, at 688 K. Their respective structures were solved using direct methods and refined using the Rietveld method. In-situ high-pressure studies of τ-Zr(HPO4)2 revealed two new phases, tetragonal ν-Zr(HPO4)2 and orthorhombic ω-Zr(HPO4)2 that crystallise at 1.1 and 8.2 GPa. The structure of ν-Zr(HPO4)2 was solved and refined using the Rietveld method. The high-pressure properties of the pyrophosphates ZrP2O7 and TiP2O7, and the pyrovanadate ZrV2O7 were studied up to 40 GPa. Both pyrophosphates display smooth compression up to the highest pressures, while ZrV2O7 has a phase transformation at 1.38 GPa from cubic to pseudo-tetragonal β-ZrV2O7 and becomes X-ray amorphous at pressures above 4 GPa. In-situ high-pressure studies of trigonal α-ZrMo2O8 revealed the existence of two new phases, monoclinic δ-ZrMo2O8 and triclinic ε-ZrMo2O8 that crystallises at 1.1 and 2.5 GPa, respectively. The structure of δ-ZrMo2O8 was solved by direct methods and refined using the Rietveld method.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tolerance to low temperature and high pressure may allow shallow-water species to extend bathymetric range in response to changing climate, but adaptation to contrasting shallow-water environments may affect tolerance to these factors. The brackish shallow-water shrimp Palaemon varians demonstrates remarkable tolerance to elevated hydrostatic pressure and low temperature, but inhabits a highly variable environment: environmental adaptation may therefore make P. varians tolerances unrepresentative of other shallow-water species. Critical thermal maximum (CTmax), critical hydrostatic pressure maximum (CPmax), and acute respiratory response to hydrostatic pressure were assessed in the shallow-water shrimp Palaemon serratus, which inhabits a more stable intertidal habitat. P. serratus’ CTmax was 22.3°C when acclimated at 10°C, and CPmax was 5.9, 10.1, and 14.1 MPa when acclimated at 5, 10, and 15°C respectively: these critical tolerances were consistently lower than P. varians. Respiratory responses to acute hyperbaric exposures similarly indicated lower tolerance to hydrostatic pressure in P. serratus than in P. varians. Contrasting tolerances likely reflect physiological adaptation to differing environments and reveal that the capacity for depth-range extension may vary among species from different habitats.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have quantitated the degree of structural preservation in cryo-sections of a vitrified biological specimen. Previous studies have used sections of periodic specimens to assess the resolution present, but preservation before sectioning was not assessed and so the damage due particularly to cutting was not clear. In this study large single crystals of lysozyme were vitrified and from these X-ray diffraction patterns extending to better than 2.1A were obtained. The crystals were high pressure frozen in 30% dextran, and cryo-sectioned using a diamond knife. In the best case, preservation to a resolution of 7.9A was shown by electron diffraction, the first observation of sub-nanometre structural preservation in a vitreous section.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the forearc of the Andean active margin in southwest Ecuador, the El Oro metamorphic complex exhibits a well exposed tilted forearc section partially migmatized. We used Raman spectroscopy on carbonaceous matter (RSCM) thermometry and pseudosections coupled with mineralogical and textural studies to constrain the pressure–temperature (P–T) evolution of the El Oro metamorphic complex during Triassic times. Our results show that anatexis of the continental crust occurred by white-mica and biotite dehydration melting along a 10 km thick crustal domain (from 4.5 to 8 kbar) with increasing temperature from 650 to 700 °C. In the biotite dehydration melting zone, temperature was buffered at 750–820 °C in a 5 km thick layer. The estimated average thermal gradient during peak metamorphism is of 30 °C/km within the migmatitic domain can be partitioned into two apparent gradients parts. The upper part from surface to 7 km depth records a 40–45 °C/km gradient. The lower part records a quasi-adiabatic geotherm with a 10 °C/km gradient consistent with an isothermal melting zone. Migmatites U–Th–Pb geochronology yielded zircon and monazite ages of 229.3 ± 2.1 Ma and 224.5 ± 2.3 Ma, respectively. This thermal event generated S-type magmatism (the Marcabeli granitoid) and was immediately followed by underplating of the high-pressure low-temperature (HP-LT) Arenillas–Panupalí unit at 225.8 ± 1.8 Ma. The association of high-temperature low-pressure (HT-LP) migmatites with HP-LT unit constitutes a new example of a paired metamorphic belt along the South American margin. We propose that in addition to crustal thinning, underplating of the Piedras gabbroic unit before 230 Ma provided the heat source necessary to foster crustal anatexis. Furthermore, its MORB signature shows that the asthenosphere was involved as the source of the heat anomaly. S-type felsic magmatism is widespread during this time and suggests that a large-scale thermal anomaly affected a large part of the South American margin during the late Triassic. We propose that crustal anatexis is related to an anomaly that arose during subduction of the Panthalassa ocean under the South American margin. Slab verticalization or slab break-off can be invoked as the origin of the upwelling of the asthenosphere.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It has been repeatedly demonstrated that athletes in a state of ego depletion do not perform up to their capabilities. We assume that autonomous self-control exertion, in contrast to forced self-control exertion, can serve as a buffer against ego depletion effects and can help individuals to show superior performance. In the present study, we applied a between-subjects design to test the assumption that autonomously exerted self-control is less detrimental for subsequent self-control performance in sports than is forced self-control exertion. In a primary self-control task, the level of autonomy was manipulated through specific instructions, resulting in three experimental conditions (autonomy-supportive: n = 19; neutral: n = 19; controlling: n = 19). As a secondary self-control task, participants executed a series of tennis serves under high-pressure conditions, and performance accuracy served as our dependent variable. As expected, a one-way between-groups ANOVA revealed that participants from the autonomy-supportive condition performed significantly better under pressure than did participants from the controlling condition. These results further highlight the importance of autonomy-supportive instructions in order to enable athletes to show superior achievements in high-pressure situations. Practical implications for the coach–athlete relationship are discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It has been repeatedly demonstrated that athletes often choke in high pressure situations because anxiety can affect attention regulation and in turn performance. There are two competing theoretical approaches to explain the negative anxiety-performance relationship. According to skillfocus theories, anxious athletes’ attention is directed at how to execute the sport-specific movements which interrupts execution of already automatized movements in expert performers. According to distraction theories, anxious athletes are distractible and focus less on the relevant stimuli. We tested these competing assumptions in a between-subject design, as semi-professional tennis players were either assigned to an anxiety group (n = 25) or a neutral group (n = 28), and performed a series of second tennis serves into predefined target areas. As expected, anxiety was negatively related to serve accuracy. However, mediation analyses with the bootstrapping method revealed that this relationship was fully mediated by self-reported distraction and not by skill-focus.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cryo-electron microscopy of vitreous section makes it possible to observe cells and tissues at high resolution in a close-to-native state. The specimen remains hydrated; chemical fixation and staining are fully avoided. There is minimal molecular aggregation and the density observed in the image corresponds to the density in the object. Accordingly, organotypic hippocampal rat slices were vitrified under high pressure and controlled cryoprotection conditions, cryosectioned at a final thickness of approximately 70 nm and observed below -170 degrees C in a transmission electron microscope. The general aspect of the tissue compares with previous electron microscopy observations. The detailed analysis of the synapse reveals that the density of material in the synaptic cleft is high, even higher than in the cytoplasm, and that it is organized in 8.2-nm periodic transcleft complexes. Previously undescribed structures of presynaptic and postsynaptic elements are also described.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Environmental transitions leading to spatial physical-chemical gradients are of ecological and evolutionary interest because they are able to induce variations in phenotypic plasticity. Thus, the adaptive variability to low-pH river discharges may drive divergent stress responses [ingestion rates (IR) and expression of stress-related genes such as Heat shock protein 70 (Hsp70) and Ferritin] in the neritic copepod Acartia tonsa facing changes in the marine chemistry associated to ocean acidification (OA). These responses were tested in copepod populations inhabiting two environments with contrasting carbonate system parameters (an estuarine versus coastal area) in the Southern Pacific Ocean, and assessing an in situ and 96-h experimental incubation under conditions of high pressure of CO2 (PCO2 1200 ppm). Adaptive variability was a determining factor in driving variability of copepods' responses. Thus, the food-rich but colder and corrosive estuary induced a traits trade-off expressed as depressed IR under in situ conditions. However, this experience allowed these copepods to tolerate further exposure to high PCO2 levels better, as their IRs were on average 43% higher than those of the coastal individuals. Indeed, expression of both the Hsp70 and Ferritin genes in coastal copepods was significantly higher after acclimation to high PCO2 conditions. Along with other recent evidence, our findings confirm that adaptation to local fluctuations in seawater pH seems to play a significant role in the response of planktonic populations to OA-associated conditions. Facing the environmental threat represented by the inter-play between multiple drivers of climate change, this biological feature should be examined in detail as a potential tool for risk mitigation policies in coastal management arrangements.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In relation to the current interest on gas storage demand for environmental applications (e.g., gas transportation, and carbon dioxide capture) and for energy purposes (e.g., methane and hydrogen), high pressure adsorption (physisorption) on highly porous sorbents has become an attractive option. Considering that for high pressure adsorption, the sorbent requires both, high porosity and high density, the present paper investigates gas storage enhancement on selected carbon adsorbents, both on a gravimetric and on a volumetric basis. Results on carbon dioxide, methane, and hydrogen adsorption at room temperature (i.e., supercritical and subcritical gases) are reported. From the obtained results, the importance of both parameters (porosity and density) of the adsorbents is confirmed. Hence, the densest of the different carbon materials used is selected to study a scale-up gas storage system, with a 2.5 l cylinder tank containing 2.64 kg of adsorbent. The scale-up results are in agreement with the laboratory scale ones and highlight the importance of the adsorbent density for volumetric storage performances, reaching, at 20 bar and at RT, 376 g l-1, 104 g l-1, and 2.4 g l-1 for CO2, CH4,and H2, respectively.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A series of carbide-derived carbons (CDC) have been prepared starting from TiC and using different chlorine treatment temperatures (500–1200 °C). Contrary to N2 adsorption measurements at −196 °C, CO2 adsorption measurements at room temperature and high pressure (up to 1 MPa) together with immersion calorimetry measurements into dichloromethane suggest that the synthesized CDC exhibit a similar porous structure, in terms of narrow pore volume, independently of the temperature of the reactive extraction treatment used (samples synthesized below 1000 °C). Apparently, these carbide-derived carbons exhibit narrow constrictions were CO2 adsorption under standard conditions (0 °C and atmospheric pressure) is kinetically restricted. The same accounts for a slightly larger molecule as N2 at a lower adsorption temperature (−196 °C), i.e. textural parameters obtained from N2 adsorption measurements on CDC must be underestimated. Furthermore, here we show experimentally that nitrogen exhibits an unusual behavior, poor affinity, on these carbide-derived carbons. CH4 with a slightly larger diameter (0.39 nm) is able to partially access the inner porous structure whereas N2, with a slightly smaller diameter (0.36 nm), does not. Consequently, these CDC can be envisaged as excellent sorbent for selective CO2 capture in flue-gas streams.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Two petroleum residues were pyrolyzed under two different conditions to obtain pitches with low or high mesophase content. The effect of the KOH: precursor ratio and the activation temperature on the packing density and porous texture of the carbons have been studied and optimized. Activated carbons combining high micropore volume (>1 cm3/g) and high packing density (0.7 g/cm3) have been successfully prepared. Regarding excess methane adsorption capacities, the best results (160 cm3 (STP)/cm3 at 25 °C and 3.5 MPa) were obtained using the pitch with the higher content of the more organized mesophase, activated at relatively low temperature (700 °C), with a medium KOH: precursor ratio (3:1). Some of the activated carbons exhibit enhanced adsorption capacity at high pressure, giving values as high as 175 cm3 (STP)/cm3 at 25 °C and 5 MPa and 200 cm3 (STP)/cm3 at 25 °C and 10 MPa (the same amount as in an empty cylinder but at half of the pressure), indicating a contribution of large micropores and narrow mesopores to adsorption at high pressure. The density of methane in pores between 1 and 2.5 nm at pressure up to 10 MPa was estimated to understand their contribution to the total adsorption capacity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

High pressure die casting is the most important production method for casting magnesium alloy components, and uniformity of appearance is an important criterion for acceptance of a component by customers. This paper investigates the influence of uniformity in surface appearance of diecast AZ91D plates on their corrosion behaviour. Through immersion, hydrogen collection and weight loss measurements it was found that corrosion is more likely to occur on the areas of the plate that appear to be darker, leading to a non-uniformly corroded surface. Microstructural analysis showed that the non-uniformity in appearance is related to a difference in the morphology and distribution of porosity across the surface of a diecast AZ91D plate. The darker areas of the surface are high in porosity which breaks the continuity of the beta-phase network and provides shortcut paths for corrosion from the surface to the interior of the casting. The brighter shiny areas of the surface are much less porous, with isolated pores being confined by corrosion resistant beta-precipitates thus reducing the corrosion rate.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

With increasing industry interest in high pressure roll grinding (HPGR) technology, there is a strong incentive for improved understanding of the nature of grinding pressure that exists in the interior of a compressed particle bed. This corresponds to the crushing region of the HPGR. The relationship between applied pressure (stress) to the particle bed and induced pressure (stress) within particles and at contact points between particles is of particular interest. A detailed parametric investigation is beyond the scope of this exploratory paper. However, this exploratory investigation does suggest some interesting behaviour. The compressed particle bed within an 80 turn diameter piston has been modelled using Particle Flow Code for three dimensions. PFC3D is a discrete element code. The total number of simulated particles was 1225 and 2450 for two beds of different thickness. Particle diameters were uniformly distributed between 4 and 4.5 mm. The results of the simulations show that stress intensity within the simulated particle beds and within the observed particles increased with increase of the applied stress. The intensity of the average vertical stress in the selected particles tended to be comparable with the intensity of the pressure applied to the surface of particle bed and was only occasionally higher. However, the stress at contact points between particles could be several times higher. In a real crusher, such high stress amplification at contacts will quickly decrease due to local crushing and a resultant increase the size of the contact area. Therefore, its significance is likely to be relatively small in an industrial context. The modelling results also suggest that failure within the particle bed will progress from the crushing surface towards the depth of the bed. (c) 2006 Elsevier Ltd. All rights reserved.