999 resultados para HETEROPOLY COMPLEXES
Resumo:
Ferrocene-conjugated L-tryptophan (L-Trp) reduced Schiff base (Fc-TrpH) copper(II) complexes [Cu(Fc-Trp)(L)](ClO(4)) of phenanthroline bases (L), viz. 2,2'-bipyridine (bpy in 1), 1,10-phenanthroline (phen in 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq in 3), and dipyrido[3,2-a:2',3'-c]phenazine (dppz in 4), were prepared and characterized and their photocytotoxicity studied. Cationic reduced Schiff base (Ph-TrpH) complexes [Cu(Ph-Trp)(L)(H(2)O)] (ClO(4)) (L = phen in 5; dppz in 6) having the ferrocenyl moiety replaced by a phenyl group and the Zn(II) analogue (7) of complex 4 were prepared and used as control species. The crystal structures of 1 and 5 with respective square-planar CuN(3)O and square-pyramidal CuN(3)O(2) coordination geometry show significantly different core structures. Complexes 1-4 exhibit a Cu(II)-Cu(I) redox couple near -0.1 V and the Fc(+)-Fc couple at similar to 0.5 V vs SCE in DMF-0.1 M [Bu(4)(n)N] (ClO(4)) (Fc = ferrocenyl moiety). The complexes display a copper(II)-based d-d band near 600 nm and a Fc-centered band at similar to 450 nm in DMF-Tris-HCl buffer. The complexes are efficient binders to calf thymus DNA. They are synthetic chemical nucleases in the presence of thiol or H(2)O(2), forming hydroxyl radicals. The photoactive complexes are cleavers of pUC19 DNA in visible light, forming hydroxyl radicals. Complexes 2-6 show photocytotoxicity in HeLa cancer cells, giving IC(50) values of 4.7, 10.2, 1.3, 4.8, and 4.3 mu M, respectively, in visible light with the appearance of apoptotic bodies. The complexes also show photocytotoxicity in MCF-7 cancer cells. Nuclear chromatin cleavage has been observed with acridine orange/ethidium bromide (AO/EB) dual staining with complex 4 in visible light. The complexes induce caspase-independent apoptosis in the HeLa cells.
Resumo:
New complexes of lanthanide perchlorates with di-t-butyl amides of di, tri and tetraglycolic acids have been synthesised. The complexes have the general formula Ln(DiGA)3(ClO4)3; Ln(TriGA)2 (ClO4)3 and Ln(TetGA)2 (C1O4)3, where Ln = La-Yb and Y and DiGA = N,N′, di-t-butyl diglycolamide, TriGA N,N′, di-t-butyl triglycolamide and TetGA = N,N′ di-t-butyl tetraglycolamide, respectively. The complexes have been characterized by analysis, electrolytic conductance, infrared,1H and13C nuclear magnetic resonance and electronic spectral data.Infrared spectra indicate the coordination of all the available ether oxygens and the amide carbonyls in each of the ligands, to the metal ions. IR and conductance data show that the perchlorate groups in all the complexes are ionic.1H and13C NMR data support the IR data regarding the mode of coordination of ligands to the metal ions. Electronic spectral shapes have been interpreted in terms of nine, eight and ten coordination in DiGA, TriGA and TetGA complexes respectively.
Resumo:
Ferrocenyl terpyridine 3d metal complexes and their analogues, viz. [M(Fc-tpy)(2)](ClO(4))(2) (1-4), [Zn(Ph-tpy)(2)](ClO(4))(2) (5) and [Zn(Fc-dpa)(2)]X(2) (X = ClO(4), 6; PF6, 6a), where M = Fe(II) in 1, Co(II) in 2, Cu(II) in 3 and Zn(II) in 4, Fc-tpy is 4'-ferrocenyl-2,2': 6', 2 `'-terpyridine, Ph-tpy is 4'-phenyl-2,2': 6', 2 `'-terpyridine and Fc-dpa is ferrocenyl-N,N-dipicolylmethanamine, are prepared and their DNA binding and photocleavage activity in visible light studied. Complexes 2, 4, 5 and 6a that are structurally characterized by X-ray crystallography show distorted octahedral geometry with the terpyridyl ligands binding to the metal in a meridional fashion, with Fc-dpa in 6a showing a facial binding mode. The Fc-tpy complexes display a charge transfer band in the visible region. The ferrocenyl (Fc) complexes show a quasi-reversible Fc(+)-Fc redox couple within 0.48 to 0.66 V vs. SCE in DMF-0.1 M TBAP. The DNA binding constants of the complexes are similar to 10(4) M(-1). Thermal denaturation and viscometric data suggest DNA surface binding through electrostatic interaction by the positively charged complexes. Barring the Cu(II) complex 3, the complexes do not show any chemical nuclease activity in the presence of glutathione. Complexes 1-4 exhibit significant plasmid DNA photocleavage activity in visible light via a photoredox pathway. Complex 5, without the Fc moiety, does not show any DNA photocleavage activity. The Zn(II) complex 4 shows a significant PDT effect in HeLa cancer cells giving an IC(50) value of 7.5 mu M in visible light, while being less toxic in the dark (IC(50) = 49 mu M).
Resumo:
Antithyroid drugs inhibit the thyroid hormone synthesis by inactivating the thyroid peroxidase and/or iodothyronine deiodinase, which are involved in iodination and deiodination reactions. Gold(I) compounds also inhibit the thyroid hormone synthesis by interacting with the selenocysteine residue of iodothyronine deiodinase. However, the chemical reactions between these two different classes of compounds have not been studied. In this paper, we describe the interaction of therapeutic gold(I) compounds with the commonly used thiourea-based antithyroid drug, methimazole. It is observed that the gold(I) phosphine complexes (R(3)PAuCl, where R = Me, Et, Ph) react with methimazole only upon deprotonation to produce the corresponding gold(I)-thiolate complexes. Addition of PPh(3) to the gold(I)-thiolates produces (R(3)PAuPPh(3))(+) (R = Me or Et), indicating the possibility of ligand exchange reactions.
Resumo:
The Morse-Smale complex is a useful topological data structure for the analysis and visualization of scalar data. This paper describes an algorithm that processes all mesh elements of the domain in parallel to compute the Morse-Smale complex of large two-dimensional data sets at interactive speeds. We employ a reformulation of the Morse-Smale complex using Forman's Discrete Morse Theory and achieve scalability by computing the discrete gradient using local accesses only. We also introduce a novel approach to merge gradient paths that ensures accurate geometry of the computed complex. We demonstrate that our algorithm performs well on both multicore environments and on massively parallel architectures such as the GPU.