929 resultados para Graphenated Carbon Nanotubes
Resumo:
Non-dispersive-infra-red (NDIR) sensors are believed to be one of the most selective and robust solutions for CO2 detection, though cost prohibits their broader integration. In this paper we propose a commercially viable silicon-on-insulator (SOI) complementary metal-oxide (CMOS) micro-electro-mechanical (MEMS) technology for an IR thermal emitter. For the first time, vertically aligned multi walled carbon nanotubes (VA-MWCNTs) are suggested as a possible coating for the enhancement of the emission intensity of the optical source of a NDIR system. VA-MWCNTs have been grown in situ by chemical vapour deposition (CVD) exclusively on the heater area. Optical microscopy, scanning electron microscopy and Raman spectroscopy have been used to verify the quality of the VA-MWCNTs growth. The CNT-coated emitter demonstrated an increased response to CO2 of approx. 60%. Furthermore, we show that the VA-MWCNTs are stable up to temperatures of 500°C for up to 100 hours. © 2013 IEEE.
Resumo:
The concept of co-catalytic layer structures for controlled laser-induced chemical vapor deposition of carbon nanotubes is established, in which a thin Ta support layer chemically aids the initial Fe catalyst reduction. This enables a significant reduction in laser power, preventing detrimental positive optical feedback and allowing improved growth control. Systematic study of experimental parameters combined with simple thermostatic modeling establishes general guidelines for the effective design of such catalyst/absorption layer combinations. Local growth of vertically aligned carbon nanotube forests directly on flexible polyimide substrates is demonstrated, opening up new routes for nanodevice design and fabrication.
Resumo:
We demonstrate wide-band ultrafast optical pulse generation at 1, 1.5, and 2 μm using a single-polymer composite saturable absorber based on double-wall carbon nanotubes (DWNTs). The freestanding optical quality polymer composite is prepared from nanotubes dispersed in water with poly(vinyl alcohol) as the host matrix. The composite is then integrated into ytterbium-, erbium-, and thulium-doped fiber laser cavities. Using this single DWNT-polymer composite, we achieve 4.85 ps, 532 fs, and 1.6 ps mode-locked pulses at 1066, 1559, and 1883 nm, respectively, highlighting the potential of DWNTs for wide-band ultrafast photonics.
Resumo:
We show that catalyst pretreatment conditions can have a profound effect on the chiral distribution in single-walled carbon nanotube chemical vapor deposition. Using a SiO2-supported cobalt model catalyst and pretreatment in NH3, we obtain a comparably narrowed chiral distribution with a downshifted tube diameter range, independent of the hydrocarbon source. Our findings demonstrate that the state of the catalyst at the point of carbon nanotube nucleation is of fundamental importance for chiral control, thus identifying the pretreatment atmosphere as a key parameter for control of diameter and chirality distributions. © 2014 American Chemical Society.
Resumo:
In this paper, we propose a lattice dynamic treatment for the total potential energy of single-walled carbon nanotubes (SWCNTs) which is, apart from a parameter for the nonlinear effects, extracted from the vibrational energy of the planar graphene sheet. The energetics, elasticity and lattice dynamics are treated in terms of the same set of force constants, independently of the tube structures. Based upon this proposal, we have investigated systematically the relaxed lattice configuration for narrow SWCNTs, the strain energy, the Young's modulus and Poisson ratio, and the lattice vibrational properties with respect to the relaxed equilibrium tubule structure. Our calculated results for various physical quantities are nicely in consistency with existing experimental measurements. In particular, we verified that the relaxation effect makes the bond length longer and the frequencies of various optical vibrational modes softer. Our calculation provides evidence that the Young's modulus of an armchair tube exceeds that of the planar graphene sheet, and that the large diameter limits of the Young's modulus and Poisson ratio are in agreement with the experimental values of graphite; the calculated radial breathing modes for ultra-narrow tubes with diameters ranging between 2 and 5 angstrom coincide with the experimental results and the existing ab initio calculations with satisfaction. For narrow tubes with a diameter of 20 angstrom, the calculated frequencies of optical modes in the tubule's tangential plane, as well as those of radial breathing modes, are also in good agreement with the experimental measurements. In addition, our calculation shows that various physical quantities of relaxed SWCNTs can actually be expanded in terms of the chiral angle defined for the corresponding ideal SWCNTs.
Resumo:
We study the Aharonov-Bohm effect in the optical phenomena of single-wall carbon nanotubes (SWCN) and also their chirality dependence. Especially, we consider the natural optical activity as a proper observable and derive its general expression based on a comprehensive symmetry analysis, which reveals the interplay between the enclosed magnetic flux and the tubule chirality for arbitrary chiral SWCN. A quantitative result for this optical property is given by a gauge invariant tight-binding approximation calculation to stimulate experimental measurements.
Resumo:
Through floating catalyst chemical vapour deposition(CVD) method, well-aligned isolated single-walled carbon nanotubes (SWCNTs) and their bundles were deposited on the metal electrodes patterned on the SiO2/Si surface under ac electric fields at relatively low temperature(280 degrees C). It was indicated that SWCNTs were effectively aligned under ac electric fields after they had just grown in the furnace. The time for a SWCNT to be aligned in the electric field and the effect of gas flow were estimated. Polarized Raman scattering was performed to characterize the aligned structure of SWCNTs. This method would be very useful for the controlled fabrication and preparation of SWCNTs in practical applications.
Resumo:
In this paper, we developed a new kind of substrate, the silver-coated anodic aluminum oxide (AAO), to investigate the characters of surface-enhanced resonant Raman scattering (SERRS) of the dilute single-walled carbon nanotubes. Homogeneous Ag-coated AAO substrate was obtained by decomposing the AgNO3 on the surface of AAO. single-walled carbon nanotubes (SWNTs) were directly grown onto this substrate through floating catalyst chemical vapor deposition method (CVD). SERRS of SWNTs was carried out using several different wavelength lasers. The bands coming from metallic SWNTs were significantly enhanced. The two SERRS mechanisms, the "electromagnetic" and "chemical" mechanism, were mainly responsible for the experiment results. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Using classical constant-pressure molecular dynamics simulations and the force constants model, radial breathing mode (RBM) transition of single-wall carbon nanotubes under hydrostatic pressure is reported. With the pressure increased, the RBM shifts linearly toward higher frequency, and the RBM transition occurs at the same critical pressure as the structural transition. The group theory indicates that the RBMs are all Raman-active; however, due to the effect of the frequency transition and the electronic structure change for tube radial deformation, the Raman intensity of the modes becomes so weak as not to be experimentally detected, which is in agreement with a recent experiment by S. Lebedkin [Phys. Rev. B 73, 094109 (2006)]. Furthermore, the calculated RBM transition pressure is well fitted to the cube of diameter (similar to 1/d(3)).
Resumo:
We provide a detailed expression of the vibrational potential for the lattice dynamics of single-wall carbon nanotubes (SWCNT's) satisfying the requirements of the exact rigid translational as well as rotational symmetries, which is a nontrivial generalization of the valence force model for the planar graphene sheet. With the model, the low-frequency behavior of the dispersion of the acoustic modes as well as the flexure mode can be precisely calculated. Based upon a comprehensive chiral symmetry analysis, the calculated mode frequencies (including all the Raman- and infrared-active modes), velocities of acoustic modes, and the polarization vectors are systematically fitted in terms of the chiral angle and radius, where the restrictions of various symmetry operations of SWCNT's are fulfilled.
Resumo:
Four well-resolved peaks with very narrow linewidths were found in the D-band and G'-band features of double-walled carbon nanotubes (DWNTs). This fact implies the occurrence of additional van Hove singularities (vHSs) in the joint density of states (JDOS) of DWNTs, which is consistent with theoretical calculations. According to their peak frequencies and theoretical analysis, the two outer peaks can be deduced to originate from a strong coupling between the two constituent tubes of commensurate DWNTs and the two inner peaks were curvature-related and assigned to originate from the two tubes with a weak coupling. This observation and elucidation constitute the first Raman evidence for atomic correlation and the resulting electronic structure change of the two constituent tubes in DWNTs. This result opens the possibility of predicting and modifying the electronic properties of DWNTs for their electronic applications.
Resumo:
In this paper we report the applicability of the density matrix renormalization group (DMRG) approach to the cylindrical single wall carbon nanotube (SWCN) for the purpose of its correlation effect. By applying the DMRG approach to the t+U+V model, with t and V being the hopping and Coulomb energies between the nearest neighboring sites, respectively, and U the on-site Coulomb energy, we calculate the phase diagram for the SWCN with chiral numbers (n(1)=3, n(2)=2), which reflects the competition between the correlation energy U and V. Within reasonable parameter ranges, we investigate possible correlated ground states, the lowest excitations, and the corresponding correlation functions in which the connection with the excitonic insulator is particularly addressed.
Resumo:
A procedure for purifying single-walled carbon nanotubes (SWNTs) synthesized by the catalytic decomposition of hydrocarbons has been developed. Based on the results from SEM observations, EDS analysis and Raman measurements, it was found that amorphous carbon, catalyst particles, vapor-grown carbon nanofibers and multi-walled carbon nanotubes were removed from the ropes of SWNTs without damaging the SWNT bundles, and a 40% yield of the SWNTs with a purity of about 95% was achieved after purification. (C) 2000 Elsevier Science Ltd. All rights reserved.