949 resultados para Global R


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Global wetlands are believed to be climate sensitive, and are the largest natural emitters of methane (CH4). Increased wetland CH4 emissions could act as a positive feedback to future warming. The Wetland and Wetland CH4 Inter-comparison of Models Project (WETCHIMP) investigated our present ability to simulate large-scale wetland characteristics and corresponding CH4 emissions. To ensure inter-comparability, we used a common experimental protocol driving all models with the same climate and carbon dioxide (CO2) forcing datasets. The WETCHIMP experiments were conducted for model equilibrium states as well as transient simulations covering the last century. Sensitivity experiments investigated model response to changes in selected forcing inputs (precipitation, temperature, and atmospheric CO2 concentration). Ten models participated, covering the spectrum from simple to relatively complex, including models tailored either for regional or global simulations. The models also varied in methods to calculate wetland size and location, with some models simulating wetland area prognostically, while other models relied on remotely sensed inundation datasets, or an approach intermediate between the two. Four major conclusions emerged from the project. First, the suite of models demonstrate extensive disagreement in their simulations of wetland areal extent and CH4 emissions, in both space and time. Simple metrics of wetland area, such as the latitudinal gradient, show large variability, principally between models that use inundation dataset information and those that independently determine wetland area. Agreement between the models improves for zonally summed CH4 emissions, but large variation between the models remains. For annual global CH4 emissions, the models vary by ±40% of the all-model mean (190 Tg CH4 yr−1). Second, all models show a strong positive response to increased atmospheric CO2 concentrations (857 ppm) in both CH4 emissions and wetland area. In response to increasing global temperatures (+3.4 °C globally spatially uniform), on average, the models decreased wetland area and CH4 fluxes, primarily in the tropics, but the magnitude and sign of the response varied greatly. Models were least sensitive to increased global precipitation (+3.9 % globally spatially uniform) with a consistent small positive response in CH4 fluxes and wetland area. Results from the 20th century transient simulation show that interactions between climate forcings could have strong non-linear effects. Third, we presently do not have sufficient wetland methane observation datasets adequate to evaluate model fluxes at a spatial scale comparable to model grid cells (commonly 0.5°). This limitation severely restricts our ability to model global wetland CH4 emissions with confidence. Our simulated wetland extents are also difficult to evaluate due to extensive disagreements between wetland mapping and remotely sensed inundation datasets. Fourth, the large range in predicted CH4 emission rates leads to the conclusion that there is both substantial parameter and structural uncertainty in large-scale CH4 emission models, even after uncertainties in wetland areas are accounted for.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Paleoecology can provide valuable insights into the ecology of species that complement observation and experiment-based assessments of climate impact dynamics. New paleoecological records (e.g., pollen, macrofossils) from the Italian Peninsula suggest a much wider climatic niche of the important European tree species Abies alba (silver fir) than observed in its present spatial range. To explore this discrepancy between current and past distribution of the species, we analyzed climatic data (temperature, precipitation, frost, humidity, sunshine) and vegetation-independent paleoclimatic reconstructions (e.g., lake levels, chironomids) and use global coupled carbon-cycle climate (NCAR CSM1.4) and dynamic vegetation (LandClim) modeling. The combined evidence suggests that during the mid-Holocene (6000 years ago), prior to humanization of vegetation, A. alba formed forests under conditions that exceeded the modern (1961-1990) upper temperature limit of the species by 5-7°C (July means). Annual precipitation during this natural period was comparable to today (>700-800 mm), with drier summers and wetter winters. In the meso-Mediterranean to sub-Mediterranean forests A. alba co-occurred with thermophilous taxa such as Quercus ilex, Q. pubescens, Olea europaea, Phillyrea, Arbutus, Cistus, Tilia, Ulmus, Acer, Hedera helix, Ilex aquifolium, Taxus, and Vitis. Results from the last interglacial (ca. 130 000-115 000 BP), when human impact was negligible, corroborate the Holocene evidence. Thermophilous Mediterranean A. alba stands became extinct during the last 5000 years when land-use pressure and specifically excessive anthropogenic fire and browsing disturbance increased. Our results imply that the ecology of this key European tree species is not yet well understood. On the basis of the reconstructed realized climatic niche of the species, we anticipate that the future geographic range of A. alba may not contract regardless of migration success, even if climate should become significantly warmer than today with summer temperatures increasing by up to 5-7°C, as long as precipitation does not fall below 700-800 mm/yr, and anthropogenic disturbance (e.g., fire, browsing) does not become excessive. Our finding contradicts recent studies that projected range contractions under global-warming scenarios, but did not factor how millennia of human impacts reduced the realized climatic niche of A. alba.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tropical wetlands are estimated to represent about 50% of the natural wetland methane (CH4) emissions and explain a large fraction of the observed CH4 variability on timescales ranging from glacial–interglacial cycles to the currently observed year-to-year variability. Despite their importance, however, tropical wetlands are poorly represented in global models aiming to predict global CH4 emissions. This publication documents a first step in the development of a process-based model of CH4 emissions from tropical floodplains for global applications. For this purpose, the LPX-Bern Dynamic Global Vegetation Model (LPX hereafter) was slightly modified to represent floodplain hydrology, vegetation and associated CH4 emissions. The extent of tropical floodplains was prescribed using output from the spatially explicit hydrology model PCR-GLOBWB. We introduced new plant functional types (PFTs) that explicitly represent floodplain vegetation. The PFT parameterizations were evaluated against available remote-sensing data sets (GLC2000 land cover and MODIS Net Primary Productivity). Simulated CH4 flux densities were evaluated against field observations and regional flux inventories. Simulated CH4 emissions at Amazon Basin scale were compared to model simulations performed in the WETCHIMP intercomparison project. We found that LPX reproduces the average magnitude of observed net CH4 flux densities for the Amazon Basin. However, the model does not reproduce the variability between sites or between years within a site. Unfortunately, site information is too limited to attest or disprove some model features. At the Amazon Basin scale, our results underline the large uncertainty in the magnitude of wetland CH4 emissions. Sensitivity analyses gave insights into the main drivers of floodplain CH4 emission and their associated uncertainties. In particular, uncertainties in floodplain extent (i.e., difference between GLC2000 and PCR-GLOBWB output) modulate the simulated emissions by a factor of about 2. Our best estimates, using PCR-GLOBWB in combination with GLC2000, lead to simulated Amazon-integrated emissions of 44.4 ± 4.8 Tg yr−1. Additionally, the LPX emissions are highly sensitive to vegetation distribution. Two simulations with the same mean PFT cover, but different spatial distributions of grasslands within the basin, modulated emissions by about 20%. Correcting the LPX-simulated NPP using MODIS reduces the Amazon emissions by 11.3%. Finally, due to an intrinsic limitation of LPX to account for seasonality in floodplain extent, the model failed to reproduce the full dynamics in CH4 emissions but we proposed solutions to this issue. The interannual variability (IAV) of the emissions increases by 90% if the IAV in floodplain extent is accounted for, but still remains lower than in most of the WETCHIMP models. While our model includes more mechanisms specific to tropical floodplains, we were unable to reduce the uncertainty in the magnitude of wetland CH4 emissions of the Amazon Basin. Our results helped identify and prioritize directions towards more accurate estimates of tropical CH4 emissions, and they stress the need for more research to constrain floodplain CH4 emissions and their temporal variability, even before including other fundamental mechanisms such as floating macrophytes or lateral water fluxes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemical and biological sensor technologies have advanced rapidly in the past five years. Sensors that require low power and operate for multiple years are now available for oxygen, nitrate, and a variety of bio-optical properties that serve as proxies for important components of the carbon cycle (e.g., particulate organic carbon). These sensors have all been deployed successfully for long periods, in some cases more than three years, on platforms such as profiling floats or gliders. Technologies for pH, pCO(2), and particulate inorganic carbon are maturing rapidly as well. These sensors could serve as the enabling technology for a global biogeochemical observing system that might operate on a scale comparable to the current Argo array. Here, we review the scientific motivation and the prospects for a global observing system for ocean biogeochemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phytoplankton photosynthesis links global ocean biology and climate-driven fluctuations in the physical environment. These interactions are largely expressed through changes in phytoplankton physiology, but physiological status has proven extremely challenging to characterize globally. Phytoplankton fluorescence does provide a rich source of physiological information long exploited in laboratory and field studies, and is now observed from space. Here we evaluate the physiological underpinnings of global variations in satellite-based phytoplankton chlorophyll fluorescence. The three dominant factors influencing fluorescence distributions are chlorophyll concentration, pigment packaging effects on light absorption, and light-dependent energy-quenching processes. After accounting for these three factors, resultant global distributions of quenching-corrected fluorescence quantum yields reveal a striking consistency with anticipated patterns of iron availability. High fluorescence quantum yields are typically found in low iron waters, while low quantum yields dominate regions where other environmental factors are most limiting to phytoplankton growth. Specific properties of photosynthetic membranes are discussed that provide a mechanistic view linking iron stress to satellite-detected fluorescence. Our results present satellite-based fluorescence as a valuable tool for evaluating nutrient stress predictions in ocean ecosystem models and give the first synoptic observational evidence that iron plays an important role in seasonal phytoplankton dynamics of the Indian Ocean. Satellite fluorescence may also provide a path for monitoring climate-phytoplankton physiology interactions and improving descriptions of phytoplankton light use efficiencies in ocean productivity models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plant-plant interactions are driven by environmental conditions, evolutionary relationships (ER) and the functional traits of the plants involved. However, studies addressing the relative importance of these drivers are rare, but crucial to improve our predictions of the effects of plant-plant interactions on plant communities and of how they respond to differing environmental conditions. To analyze the relative importance of - and interrelationships among - these factors as drivers of plant-plant interactions, we analyzed perennial plant co-occurrence at 106 dryland plant communities established across rainfall gradients in nine countries. We used structural equation modelling to disentangle the relationships between environmental conditions (aridity and soil fertility), functional traits extracted from the literature, and ER, and to assess their relative importance as drivers of the 929 pairwise plant-plant co-occurrence levels measured. Functional traits, specifically facilitated plants' height and nurse growth form, were of primary importance, and modulated the effect of the environment and ER on plant-plant interactions. Environmental conditions and ER were important mainly for those interactions involving woody and graminoid nurses, respectively. The relative importance of different plant-plant interaction drivers (ER, functional traits, and the environment) varied depending on the region considered, illustrating the difficulty of predicting the outcome of plant-plant interactions at broader spatial scales. In our global-scale study on drylands, plant-plant interactions were more strongly related to functional traits of the species involved than to the environmental variables considered. Thus, moving to a trait-based facilitation/competition approach help to predict that: (1) positive plant-plant interactions are more likely to occur for taller facilitated species in drylands, and (2) plant-plant interactions within woody-dominated ecosystems might be more sensitive to changing environmental conditions than those within grasslands. By providing insights on which species are likely to better perform beneath a given neighbour, our results will also help to succeed in restoration practices involving the use of nurse plants. (C) 2014 Geobotanisches Institut ETH, Stiftung Ruebel. Published by Elsevier GmbH. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate assessments of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the climate policy process, and project future climate change. Present-day analysis requires the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. Here we describe datasets and a methodology developed by the global carbon cycle science community to quantify all major components of the global carbon budget, including their uncertainties. We discuss changes compared to previous estimates, consistency within and among components, and methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics, while emissions from Land-Use Change (ELUC), including deforestation, are based on combined evidence from land cover change data, fire activity in regions undergoing deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. Finally, the global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms. For the last decade available (2002–2011), EFF was 8.3 ± 0.4 PgC yr−1, ELUC 1.0 ± 0.5 PgC yr−1, GATM 4.3 ± 0.1 PgC yr−1, SOCEAN 2.5 ± 0.5 PgC yr−1, and SLAND 2.6 ± 0.8 PgC yr−1. For year 2011 alone, EFF was 9.5 ± 0.5 PgC yr−1, 3.0 percent above 2010, reflecting a continued trend in these emissions; ELUC was 0.9 ± 0.5 PgC yr−1, approximately constant throughout the decade; GATM was 3.6 ± 0.2 PgC yr−1, SOCEAN was 2.7 ± 0.5 PgC yr−1, and SLAND was 4.1 ± 0.9 PgC yr−1. GATM was low in 2011 compared to the 2002–2011 average because of a high uptake by the land probably in response to natural climate variability associated to La Niña conditions in the Pacific Ocean. The global atmospheric CO2 concentration reached 391.31 ± 0.13 ppm at the end of year 2011. We estimate that EFF will have increased by 2.6% (1.9–3.5%) in 2012 based on projections of gross world product and recent changes in the carbon intensity of the economy. All uncertainties are reported as ±1 sigma (68% confidence assuming Gaussian error distributions that the real value lies within the given interval), reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. This paper is intended to provide a baseline to keep track of annual carbon budgets in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The International Surface Temperature Initiative (ISTI) is striving towards substantively improving our ability to robustly understand historical land surface air temperature change at all scales. A key recently completed first step has been collating all available records into a comprehensive open access, traceable and version-controlled databank. The crucial next step is to maximise the value of the collated data through a robust international framework of benchmarking and assessment for product intercomparison and uncertainty estimation. We focus on uncertainties arising from the presence of inhomogeneities in monthly mean land surface temperature data and the varied methodological choices made by various groups in building homogeneous temperature products. The central facet of the benchmarking process is the creation of global-scale synthetic analogues to the real-world database where both the "true" series and inhomogeneities are known (a luxury the real-world data do not afford us). Hence, algorithmic strengths and weaknesses can be meaningfully quantified and conditional inferences made about the real-world climate system. Here we discuss the necessary framework for developing an international homogenisation benchmarking system on the global scale for monthly mean temperatures. The value of this framework is critically dependent upon the number of groups taking part and so we strongly advocate involvement in the benchmarking exercise from as many data analyst groups as possible to make the best use of this substantial effort.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim Geographical, climatic and soil factors are major drivers of plant beta diversity, but their importance for dryland plant communities is poorly known. The aim of this study was to: (1) characterize patterns of beta diversity in global drylands; (2) detect common environmental drivers of beta diversity; and (3) test for thresholds in environmental conditions driving potential shifts in plant species composition. Location Global. Methods Beta diversity was quantified in 224 dryland plant communities from 22 geographical regions on all continents except Antarctica using four complementary measures: the percentage of singletons (species occurring at only one site); Whittaker's beta diversity, β(W); a directional beta diversity metric based on the correlation in species occurrences among spatially contiguous sites, β(R2); and a multivariate abundance-based metric, β(MV). We used linear modelling to quantify the relationships between these metrics of beta diversity and geographical, climatic and soil variables. Results Soil fertility and variability in temperature and rainfall, and to a lesser extent latitude, were the most important environmental predictors of beta diversity. Metrics related to species identity percentage of singletons and β(W) were most sensitive to soil fertility, whereas those metrics related to environmental gradients and abundance (β(R2) and β(MV) were more associated with climate variability. Interactions among soil variables, climatic factors and plant cover were not important determinants of beta diversity. Sites receiving less than 178 mm of annual rainfall differed sharply in species composition from more mesic sites (> 200 mm). Main conclusions Soil fertility and variability in temperature and rainfall are the most important environmental predictors of variation in plant beta diversity in global drylands. Our results suggest that those sites annually receiving c. 178 mm of rainfall will be especially sensitive to future climate changes. These findings may help to define appropriate conservation strategies for mitigating effects of climate change on dryland vegetation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simulating the spatio-temporal dynamics of inundation is key to understanding the role of wetlands under past and future climate change. Earlier modelling studies have mostly relied on fixed prescribed peatland maps and inundation time series of limited temporal coverage. Here, we describe and assess the the Dynamical Peatland Model Based on TOPMODEL (DYPTOP), which predicts the extent of inundation based on a computationally efficient TOPMODEL implementation. This approach rests on an empirical, grid-cell-specific relationship between the mean soil water balance and the flooded area. DYPTOP combines the simulated inundation extent and its temporal persistency with criteria for the ecosystem water balance and the modelled peatland-specific soil carbon balance to predict the global distribution of peatlands. We apply DYPTOP in combination with the LPX-Bern DGVM and benchmark the global-scale distribution, extent, and seasonality of inundation against satellite data. DYPTOP successfully predicts the spatial distribution and extent of wetlands and major boreal and tropical peatland complexes and reveals the governing limitations to peatland occurrence across the globe. Peatlands covering large boreal lowlands are reproduced only when accounting for a positive feedback induced by the enhanced mean soil water holding capacity in peatland-dominated regions. DYPTOP is designed to minimize input data requirements, optimizes computational efficiency and allows for a modular adoption in Earth system models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the climate policy process, and project future climate change. Present-day analysis requires the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. Here we describe datasets and a methodology developed by the global carbon cycle science community to quantify all major components of the global carbon budget, including their uncertainties. We discuss changes compared to previous estimates, consistency within and among components, and methodology and data limitations. Based on energy statistics, we estimate that the global emissions of CO2 from fossil fuel combustion and cement production were 9.5 ± 0.5 PgC yr−1 in 2011, 3.0 percent above 2010 levels. We project these emissions will increase by 2.6% (1.9–3.5%) in 2012 based on projections of Gross World Product and recent changes in the carbon intensity of the economy. Global net CO2 emissions from Land-Use Change, including deforestation, are more difficult to update annually because of data availability, but combined evidence from land cover change data, fire activity in regions undergoing deforestation and models suggests those net emissions were 0.9 ± 0.5 PgC yr−1 in 2011. The global atmospheric CO2 concentration is measured directly and reached 391.38 ± 0.13 ppm at the end of year 2011, increasing 1.70 ± 0.09 ppm yr−1 or 3.6 ± 0.2 PgC yr−1 in 2011. Estimates from four ocean models suggest that the ocean CO2 sink was 2.6 ± 0.5 PgC yr−1 in 2011, implying a global residual terrestrial CO2 sink of 4.1 ± 0.9 PgC yr−1. All uncertainties are reported as ±1 sigma (68% confidence assuming Gaussian error distributions that the real value lies within the given interval), reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. This paper is intended to provide a baseline to keep track of annual carbon budgets in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a class of models with gauged U(1) R symmetry in 4D N=1 super-gravity that have, at the classical level, a metastable ground state, an infinitesimally small (tunable) positive cosmological constant and a TeV gravitino mass. We analyse if these properties are maintained under the addition of visible sector (MSSM-like) and hidden sector state(s), where the latter may be needed for quantum consistency. We then discuss the anomaly cancellation conditions in supergravity as derived by Freedman, Elvang and Körs and apply their results to the special case of a U(1) R symmetry, in the presence of the Fayet-Iliopoulos term (ξ) and Green-Schwarz mechanism(s). We investigate the relation of these anomaly cancellation conditions to the “naive” field theory approach in global SUSY, in which case U(1) R cannot even be gauged. We show the two approaches give similar conditions. Their induced constraints at the phenomenological level, on the above models, remain strong even if one lifted the GUT-like conditions for the MSSM gauge couplings. In an anomaly-free model, a tunable, TeV-scale gravitino mass may remain possible provided that the U(1) R charges of additional hidden sector fermions (constrained by the cubic anomaly alone) do not conflict with the related values of U(1) R charges of their scalar superpartners, constrained by existence of a stable ground state. This issue may be bypassed by tuning instead the coefficients of the Kahler connection anomalies (b K , b CK ).

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil-fuel combustion and cement production (EFF) are based on energy statistics, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated for the first time in this budget with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2 and land cover change (some including nitrogen–carbon interactions). All uncertainties are reported as ± 1 σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2003–2012), EFF was 8.6 ± 0.4 GtC yr − 1, ELUC 0.9 ± 0.5 GtC yr − 1, GATM 4.3 ± 0.1 GtC yr − 1, S OCEAN 2.5 ± 0.5 GtC yr − 1, and S LAND 2.8 ± 0.8 GtC yr − 1. For year 2012 alone, EFF grew to 9.7 ± 0.5 GtC yr − 1, 2.2 % above 2011, reflecting a continued growing trend in these emissions, GATM was 5.1 ± 0.2 GtC yr − 1, SOCEANwas 2.9 ± 0.5 GtC yr −1, and assuming an ELU Cof 1.0 ± 0.5 GtC yr − 1 (based on the 2001–2010 average), SLAND was 2.7 ± 0.9 GtC yr − 1. GATM was high in 2012 compared to the 2003–2012 average, almost entirely reflecting the high EFF. The global atmospheric CO2 con- centration reached 392.52 ± 0.10 ppm averaged over 2012. We estimate that EFF will increase by 2.1 % (1.1–3.1 %) to 9.9 ± 0.5 GtC in 2013, 61 % above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the economy. With this projection, cumulative emissions of CO2 will reach about 535 ± 55 GtC for 1870–2013, about 70 % from EFF (390 ± 20 GtC) and 30 % from ELUC (145 ± 50 GtC). This paper also documents any changes in the methods and data sets used in this new carbon budget from previous budgets (Le Quéré et al., 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center.