980 resultados para Geometría proyectiva


Relevância:

10.00% 10.00%

Publicador:

Resumo:

En el presente trabajo se reportan los resultados obtenidos al implementar una propuesta de situación didáctica diseñada previamente para ayudar a los estudiantes de segundo año de secundaria a mejorar sus procesos de justificación. En el diseño de las actividades se consideró la Teoría de Situaciones Didácticas de Guy Brousseau y como herramienta para la elaboración de la secuencia a la Visualización. El contenido central de la propuesta es sobre temas de geometría plana. Por tanto el presente reporte tiene como objetivo dar a conocer los resultados logrados durante la investigación; dentro de los cuales encontramos que a través de los ejercicios de visualización se apoyó a los alumnos comprobar resultados y construir conceptos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hablar sobre la importancia del computador en la enseñanza de la matemática parece ser un tema trillado del cual se hacen todo tipo de especulaciones, desde quienes lo rechazan completamente, hasta quienes lo idealizan atribuyéndole casi un papel mágico llegando inclusive a confundir el “hacer matemáticas ”con utilizar el computador para acortar caminos, corroborar teorías , construir gráficos, realizar cálculos y otros aspectos que son útiles no sólo al “hacer ”sino, también, al “aprender” matemáticas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El presente trabajo profudiza sobre las nociones de nota musical e intervalo musical en sentido geométrico y aritmético. El concepto aritmético de nota musical aporta a los alumnos la idea de que una misma cosa (una nota) se puede mostrar con distintas apariencias(diferentes frecuencias), el concepto de nota musical se expone a partir del movimiento de dos móviles con movimiento uniforme. A partir de estos problemas dinámicos se da un procedimiento geométrico para determinar cuatro puntos en cuaterna armónica. Esta construcción proporciona un método para dividir armónicamente el intervalo de una octava mediante las notas tercera y quinta y permite construir acordes perfectos y comprender la razón de la diferente separación entre los trastes de una guitarra.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Los números de Fibonacci han cautivado por muchos años al ser humano por sus aplicaciones en la vida cotidiana y en otras disciplinas. En este documento se presenta el origen de los números de Fibonacci, sus propiedades y su contribución a las matemáticas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

¿Cómo se logran esas bonitas y suaves curvas en la pantalla de un ordenador? Parece que fluyen suavemente y no tienen ese efecto desigual que sale si dibujas un montón de puntos y los unes con segmentos rectilíneos. La razón es que el software muestrea los dibujos y usa métodos de interpolación suave. A menudo, el método de interpolación es el llamado de los splines cúbicos, que aprovecha inteligentemente ciertos conceptos matemáticos corrientes, como mostraremos a continuación.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Se presenta una manera de solucionar ecuaciones cuadráticas a partir de las proposiciones 5 y 6 del libro II de los Elementos de Euclides. Se estudian estas proposiciones, su demostración y aplicación en la solución de las ecuaciones cuadráticas resaltando su valor didáctico. Se presenta además la solución de algunas de las ecuaciones cuadráticas que distinguía Al-Kharizmi, quien utilizaba, al igual que Euclides, la aplicación de áreas en su resolución.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El interés de este trabajo es ilustrar un tópico a través del cual se pueda establecer relación entre las matemáticas y la física en el nivel de educación media. Se consideran algunos aspectos relacionados con el Principio de Fermat que se pueden desarrollar para profundizar los conocimientos de los estudiantes en cuanto a geometría, cálculo diferencial y física, asignaturas que, por lo general, se abordan desvinculadas una de la otra.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Parece mentira que viviendo los terrícolas en una esfera (bueno, casi), sin embargo, me conozcan tan poco. Aquí se realiza un estudio a la esfera.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reproducción del modelo de un tetraedro regular con una tirilla de papel convenientemente plegada.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Utilizar álgebra computacional no es tan fácil como puede parecer. Frecuentemente, los estudiantes encuentran obstáculos mientras trabajan en un entorno de álgebra computacional. En este artículo se distinguen los obstáculos globales y los locales, y se identifican los de ambas categorías. La teoría de la instrumentación proporciona un marco para interpretar el obstáculo como un desequilibrio entre los aspectos conceptual y técnico de un esquema de instrumentación. Se argumenta que explicitar los obstáculos y tratar de superarlos, conduce al desarrollo conceptual. En consecuencia, los obstáculos constituyen oportunidades de aprendizaje.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En ocasión de la realización de la VI Reunión de Didáctica de la Matemática del Cono Sur realizada en Buenos Aires, Argentina, en Julio de 2002, el mismo grupo de docentes que escribimos el artículo "Poliedros en el aula" que se publicó en el volumen 49 de esta revista, presentamos en un taller la ampliación y continuación de la experiencia allí relatada, al nivel terciario.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este trabajo se describe y analiza el programa GeoGebra. Este software nos permitirá crear construcciones y páginas web dinámicas de una forma fácil e intuitiva. Con el alumnado podremos trabajar con la propia aplicación o con los archivos html interactivos que se generan tras una sencilla exportación. El uso de GeoGebra no es complicado y no requiere dedicar sesiones específicas para la explicación de su funcionamiento. Desde el primer contacto con el mismo y con pequeñas aclaraciones por parte del profesorado, el alumnado será capaz de crear construcciones elementales. Conforme vaya utilizándolo con más frecuencia irá profundizando en sus posibilidades.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Las deducciones que a lo largo de la historia se han realizado en torno al teorema de Pitágoras pueden ayudar en el proceso de enseñanza-aprendizaje que realmente necesitan nuestros estudiantes, con el fin de que comprendan los conceptos a través de la reconstrucción de un método, de tal manera que no mecanicen reglas sino mas bien se logre aumentar y relacionar los conceptos adquiridos previamente de tal manera que se logre una mejor comprensión. Usaremos el enfoque histórico como una propuesta metodológica que actué como motivación para el alumno, ya que por medio de ella el estudiante descubrirá como generar los conceptos a través de métodos que aprenderá en clase. Discutiremos los conceptos y propiedades fundamentales de magnitudes, tales como la longitud y el área de figuras geométricas dadas en una y dos dimensiones, repasaremos los conceptos del producto notable del cuadrado de la suma de dos cantidades desde el punto de vista geométrico lo cual nos ayudara a inducir la demostración del teorema de Pitágoras a través de triángulos rectángulos notables e isósceles rectángulos, tomando en consideración el área de los cuadrados que se encuentra en los lados de dichos triángulos. Esto nos ayudara a recalcar la generalización del teorema de Pitágoras a través de figuras regulares. Las deducciones se harán pasando de la rama de la matemática llamada Algebra, conjugándola o dándole soporte con otra que muestra la forma estructural, como lo es la Geometría.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Las deducciones que a lo largo de la historia se han realizado en torno al Teorema de Pitágoras pueden ayudar en el proceso de enseñanza-aprendizaje que realmente necesitan nuestros estudiantes, con el fin de que comprendan los conceptos a través de la reconstrucción de un método, de tal manera que no mecanicen reglas sino mas bien se logre aumentar y relacionar los conceptos adquiridos previamente de tal manera que se logre una mejor comprensión. Usaremos el enfoque histórico como una propuesta metodológica que actué como motivación para el alumno, ya que por medio de ella el estudiante descubrirá como generar los conceptos a través de métodos que aprenderá en clase. Discutiremos los conceptos y propiedades fundamentales de magnitudes, tales como la longitud y el área de figuras geométricas dadas en una y dos dimensiones, repasaremos los conceptos del producto notable del cuadrado de la suma de dos cantidades desde el punto de vista geométrico lo cual nos ayudara a inducir la demostración del Teorema de Pitágoras a través de triángulos rectángulos notables e isósceles rectángulos, tomando en consideración el área de los cuadrados que se encuentra en los lados de dichos triángulos. Esto nos ayudara a recalcar la generalización del Teorema de Pitágoras a través de figuras regulares. Las deducciones se harán pasando de la rama de la matemática llamada Álgebra, conjugándola o dándole soporte con otra que muestra la forma estructural, como lo es la Geometría.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este documento se hace un estudio del software GeoGebra que permite abordar la geometría, el cálculo y el álgebra a través de construcciones dinámicas. Una posibilidad muy interesante que nos ofrece el programa, desde el punto de vista didáctico, es la exportación a formato html. Esta opción permitirá al alumnado manipular escenas dinámicas en un navegador Web y, así, analizar comportamientos, visualizar conceptos, propiedades, modificar las construcciones, etc.