964 resultados para GROUND STATE SOLUTION


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We introduce a new hybrid approach to determine the ground state geometry of molecular systems. Firstly, we compared the ability of genetic algorithm (GA) and simulated annealing (SA) to find the lowest energy geometry of silicon clusters with six and 10 atoms. This comparison showed that GA exhibits fast initial convergence, but its performance deteriorates as it approaches the desired global extreme. Interestingly, SA showed a complementary convergence pattern, in addition to high accuracy. Our new procedure combines selected features from GA and SA to achieve weak dependence on initial parameters, parallel search strategy, fast convergence and high accuracy. This hybrid algorithm outperforms GA and SA by one order of magnitude for small silicon clusters (Si6 and Si10). Next, we applied the hybrid method to study the geometry of a 20-atom silicon cluster. It was able to find an original geometry, apparently lower in energy than those previously described in literature. In principle, our procedure can be applied successfully to any molecular system. © 1998 Elsevier Science B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate the flux penetration patterns and matching fields of a long cylindrical wire of circular cross section in the presence of an external magnetic field. For this study we write the London theory for a long cylinder both for the mixed and Meissner states, with boundary conditions appropriate for this geometry. Using the Monte Carlo simulated annealing method, the free energy of the mixed state is minimized with respect to the vortex position and we obtain the ground state of the vortex lattice for N=3 up to 18 vortices. The free energy of the Meissner and mixed states provides expressions for the matching fields. We find that, as in the case of samples of different geometry, the finite-size effect provokes a delay on the vortex penetration and a vortex accumulation in the center of the sample. The vortex patterns obtained are in good agreement with experimental results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The size effects in the magnetization of a long cylindrical wire of circular cross section in the presence of an external magnetic field are investigated. For this study the London theory is used with boundary conditions appropriate for this geometry. Using the Monte Carlo simulated annealing method, the free energy of the mixed state is minimized with respect to the vortex positions. The ground state of the vortex lattice for n = 1 up to 18 vortices for a given radius of the cylinder is obtained. It is found that the finite size of the sample provokes a matching effect in the magnetization, as found in experiments with superconducting samples of finite size but different geometry. © 1999 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The influence of a nearest-neighbor Coulomb repulsion of strength V on the properties of the ferromagnetic Kondo model is analyzed using computational techniques. The Hamiltonian studied here is defined on a chain using localized S = 1/2 spins, and one orbital per site. Special emphasis is given to the influence of the Coulomb repulsion on the regions of phase separation recently discovered in this family of models, as well as on the double-exchange-induced ferromagnetic ground state. When phase separation dominates at V= 0, the Coulomb interaction breaks the large domains of the two competing phases into small islands of one phase embedded into the other. This is in agreement with several experimental results, as discussed in the text. Vestiges of the original phase separation regime are found in the spin structure factor as incommensurate peaks, even at large values of V. In the ferromagnetic regime close to density n = 0.5, the Coulomb interaction induces tendencies to charge ordering without altering the fully polarized character of the state. This regime of charge-ordered ferromagnetism may be related with experimental observations of a similar phase by Chen and Cheong [Phys. Rev. Lett. 76, 4042 (1996)]. Our results reinforce the recently introduced notion [see, e.g., S. Yunoki et al., Phys. Rev. Lett. 80, 845 (1998)] that in realistic models for manganites analyzed with unbiased many-body techniques, the ground state properties arise from a competition between ferromagnetism and phase-separation - charge-ordering tendencies. ©1999 The American Physical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Exact solutions are found for the Dirac equation for a combination of Lorentz scalar and vector Coulombic potentials with additional non-Coulombic parts. An appropriate linear combination of Lorentz scalar and vector non-Coulombic potentials, with the scalar part dominating, can be chosen to give exact analytic Dirac wave functions. The method works for the ground state or for the lowest orbital state with l = j - 1/2 , for any j.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The lower bound masses of the ground-state relativistic three-boson system in 1 + 1, 2 + 1 and 3 + 1 spacetime dimensions are obtained. We have considered a reduction of the ladder Bethe-Salpeter equation to the lightfront in a model with renormalized two-body contact interaction. The lower bounds are deduced with the constraint of reality of the two-boson subsystem mass. It is verified that, in some cases, the lower bound approaches the ground-state binding energy. The corresponding non-relativistic limits are also verified.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Bose-Einstein condensate of several types of trapped bosons at ultralow temperature was described using the coupled time dependent Gross-Pitaevskii equation. Both the stationary and time evolution problems were analyzed using this approach. The ground state stationary wave functions were found to be sharply peaked near the origin for attractive interatomic interaction for larger nonlinearity while for a repulsive interatomic interaction the wave function extends over a larger region of space.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We derive the equation of state for hot nuclear matter using the Walecka model in a non-perturbative formalism. We include here the vacuum polarization effects arising from the nucleon and scalar mesons through a realignment of the vacuum. A ground state structure with baryon-antibaryon condensates yields the results obtained through the relativistic Hartree approximation of summing baryonic tadpole diagrams. Generalization of such a state to include the quantum effects for the scalar meson fields through the σ -meson condensates amounts to summing over a class of multiloop diagrams. The techniques of the thermofield dynamics method are used for the finite-temperature and finite-density calculations. The in-medium nucleon and sigma meson masses are also calculated in a self-consistent manner. We examine the liquid-gas phase transition at low temperatures (≈ 20 MeV), as well as apply the formalism to high temperatures to examine a possible chiral symmetry restoration phase transition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A basis-set calculation scheme for S-waves Ps-He elastic scattering below the lowest inelastic threshold was formulated using a variational expression for the transition matrix. The scheme was illustrated numerically by calculating the scattering length in the electronic doublet state: a=1.0±0.1 a.u.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The critical number of atoms for Bose-Einstein condensates with cylindrically symmetrical traps were calculated. The time evolution of the condensate was also studied at changing ground state. A conjecture on higher-order nonlinear effects was also discussed to determine its signal and strength. The results show that by exchanging frequencies, the geometry favors the condensation of larger number of particles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gd2SiO5 is among the interesting and suitable hosts for Er3+ which find extensive applications in the infrared, visible and ultraviolet spectral regions. In order to investigate its potentialities, a prior study of the spectroscopic behaviour of Er3+ substituting for Gd3+ ions in the two crystallographic sites of the host was performed. Absorption, excitation, site-selective emission and time-resolved spectroscopies were employed in the visible spectral region to study transitions between excited 4S3/2 and ground 4I15/2 states. These levels multiplets were attributed to each site separately, and their corresponding 4S3/2 lifetimes (1.8 ± 0.1 μs for site 1 and 3.2 ± 0.1 μs for site 2) were determined.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider fermions in one-dimensional superlattices (SL's), modeled by site-dependent Hubbard-U couplings arranged in a repeated pattern of repulsive (i.e., U>0) and free (U=0) sites. Density matrix renormalization group diagonalization of finite systems is used to calculate the local moment and the magnetic structure factor in the ground state. We have found four regimes for magnetic behavior: uniform local moments forming a spin-density wave (SDW), floppy local moments with short-ranged correlations, local moments on repulsive sites forming long-period SDW's superimposed with short-ranged correlations, and local moments on repulsive sites solely with long-period SDW's; the boundaries between these regimes depend on the range of electronic densities ρ and on the SL aspect ratio. Above a critical electronic density, ρ↑↓, the SDW period oscillates both with ρ and with the spacer thickness. The former oscillation allows one to reproduce all SDW wave vectors within a small range of electronic densities, unlike the homogeneous system. The latter oscillation is related to the exchange oscillation observed in magnetic multilayers. A crossover between regimes of thin to thick layers has also been observed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A quantitative analysis of the critical number of attractive Bose-Einstein condensed atoms in asymmetric traps was studied. The Gross-Pitaevskii (GP) formalism for an atomic system with arbitrary nonspherically symmetric harmonic trap was also discussed. Characteristic limits were obtained for reductions from three to two and one dimensions from three to two and one dimensions, in perfect cylindrical symmetries as well as in deformed ones.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Natural scales determine the physics of quantum few-body systems with short-range interactions. Thus, the scaling limit is found when the ratio between the scattering length and the interaction range tends to infinity, while the ratio between the physical scales are kept fixed. From the formal point of view, the relation of the scaling limit and the renormalization aspects of a few-body model with a zero-range interaction, through the derivation of subtracted three-body T-matrix equations that are renormalization-group invariant.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present recent results on frequency upconversion (UPC) obtained in fluoroindate glasses (FIG) doped with Ho3+, Tm3+ and Nd3+ ions and codoped with Pr3+/Nd3+ and Yb3+/Tb3+ ions. The results for the Ho3+-doped samples show strong evidence of energy transfer (ET) between Ho3+ ions resonantly excited at 640 nm. The origin of the blue-green upconverted fluorescence observed was identified and the dynamics of the signals revealed the pathways involved in the UPC process. In the case of Tm3+-doped FIG, the samples were resonantly excited at 650 nm and the main mechanism that contributes for the red-to-blue upconversion is excited-state absorption (ESA). The FIG samples codoped with Pr3+/Nd3+ were excited at 588 nm in resonance with transitions starting from the ground state of the Nd 3+ and the Pr3+ ions. It was observed that the presence of Nd3+ ions enhanced the Pr3+ emission at 480 nm by two orders of magnitude. Multiphonon (MP)-assisted upconversion is also discussed for Nd3+-doped FIG pumped at 866 nm. Emission at 750 nm with a peculiar linear dependence with the laser intensity was observed and explained. A rate-equation model that includes MP absorption via thermally coupled electronic excited states of Nd3+ was developed and describes well the experimental results. The role played by effective phonon modes is clearly demonstrated. MP-assisted UPC process was also studied in Yb3+/ Tb3+-codoped FIG samples excited at 1064 nm, which is off-resonance with electronic transitions starting from the ground state. It was determined that the mechanism leading to Tb3+ emission in the blue is due to ET from a pair of excited Yb3+ ions followed by ESA in the Tb 3+ ions. © 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS.