972 resultados para GN Anthropology
Resumo:
Transliteration system for mobile phone is an area that is always in demand given the difficulties and constraints we face in its implementation. In this paper we deal with automatic transliteration system for Kannada which has a non-uniform geometry and inter-character spacing unlike non-oriental language text like English. So it is even more a challenging problem. Working model consists of part of the process taking place on a mobile with remaining on a server. Good results are achieved.
Resumo:
Glasses of various compositions in the system (100 - x)Li-2 B-4 O-7 - x (SrO-Bi2O3-Nb2O5) (10 less than or equal to x less than or equal to 60) (in molar ratio) were prepared via a conventional melt-quenching technique. The glassy nature of the as-quenched samples was established by Differential Thermal Analyses (DTA). X-ray powder diffraction (XRD) and Transmission Electron Microscopic (TEM) studies confirmed the amorphous nature of the as quenched and crystallinity in the heat-treated samples. The formation of nanocrystalline layered perovskite SrBi2Nb2O9 (SBN) phase, in the samples heat-treated at temperatures higher than 550degreesC, through an intermediate fluorite phase in the LBO glass matrix was confirmed by both the XRD and High Resolution Transmission Electron Microscopy (HRTEM). The samples that were heat-treated at two different temperatures, 550 and 625degreesC, (containing 0.35 and 0.47 mum sized SBN crystallites) exhibited broad dielectric anomalies in the vicinity of ferroelectric to paraelectric transition temperature of the parent SBN ceramics. A downward shift in the phase transition temperature was observed with decreasing crystallite size of SBN. The observation of pyroelectric and ferroelectric properties for the present samples confirmed their polar nature.
Resumo:
Pd-coated Ni nanoparticles of 50 +/- 15 nm size are prepared by the polyol method and characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and thermogravimetry analysis. Surface coverage of Pd on Ni particles is less than a monolayer for 0.5 and 1 at% Pd-coated Ni. Quantitative conversion of nitrobenzene to aniline is observed over these Pd-coated Ni particles at 27degreesC under one atmospheric pressure of hydrogen. 0.5 and 1 at% Pd-coated Ni exhibits 10 times greater activity than that of typical colloidal palladium and platinum catalysts and 2.5 times higher activity than commercial 5 wt% Pd/C.
Resumo:
Thin films of the semiconducting, monoclinic vanadium dioxide, VO2(M) have been prepared on ordinary glass by two methods: directly by low-pressure metalorganic chemical vapor deposition (MOCVD), and by argon-annealing films of the VO2(B) phase deposited by MOCVD. The composition and microstructure of the films have been examined by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Films made predominantly of either the B or the M phase, as deposited, can only be obtained over a narrow range of deposition temperatures. At the lower end of this temperature range, the as-deposited films are strongly oriented, although the substrate is glass. This can be understood from the drive to minimize surface energy. Films of the B phase have a platelet morphology, which leads to an unusual microstructure at the lower-deposition temperatures. Those grown at similar to370 degreesC convert to the metallic, rutile (R) phase when annealed at 550 degreesC, whereas those deposited at 420 degreesC transform to the R phase only at 580 degreesC. (When cooled to room temperature, the annealed films convert reversibly from the R phase to the M phase.) Electron microscopy shows that annealing leads to disintegration of the single crystalline VO2(B) platelets into small crystallites of VO2(R), although the platelet morphology is retained. When the annealing temperature is relatively low, these crystallites are nanometer sized. At a higher-annealing temperature, the transformation leads to well-connected and similarly oriented large grains of VO2(R), enveloped in the original platelet. The semiconductor-metal transition near 68 degreesC leads to a large jump in resistivity in all the VO2(M) films, nearly as large as in epitaxial films on single-crystal substrates. When the annealed films contain well-connected large grains, the transition is very sharp. Even when preferred orientation is present, the transition is not as sharp in as-deposited VO2(M), because the crystallites are not densely packed as in annealed VO2(B). However, the high degree of orientation in these films leads to a narrow temperature hysteresis. (C) 2002 American Institute of Physics.
Resumo:
Aluminum oxide films have been prepared by ion assisted deposition using argon ions with energy in the range 300 to 1000 eV and current density in the range 50 to 220 μA/cm2. The influence of ion energy and current density on the optical and structural properties has been investigated. The refractive index, packing density, and extinction coefficient are found to be very sensitive to the ion beam parameters and substrate temperatures. The as-deposited films were found to be amorphous and could be transformed into crystalline phase on annealing. However, the crystalline phases were different in films prepared at ambient and elevated substrate temperatures.
Resumo:
Thin films of VO2(B), a metastable polymorph of vanadium dioxide, have been grown on glass by low-pressure metalorganic chemical vapor deposition (MOCVD). The films grown for 90 minutes have atypical microstructure, comprising micrometer-sized, island-like entities made up of numerous small, single-crystalline platelets (≅1 μm) emerging orthogonally from larger ones at the center. Microstructure evolution as a function of deposition time has been examined by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The metastable VO2(B) transforms to the stable rutile (R) phase at 550°C in inert ambient, which on cooling convert reversibly to M phase. Electron microscopy shows that annealing leads to the disintegration of the VO2(B) platelets into small crystallites of the rutile phase VO2(R), although the platelet morphology is retained. The magnitude of the jump in resistance at the semiconductor-to-metal, VO2(M)→VO2(R) phase transition depends on the arrangement of polycrystalline platelets in the films.
Resumo:
We report a low-temperature synthesis of La1.95Na0.05NiO4 from NaOH flux, La0.97K0.03NiO3 and La0.95K0.05Ni0.85Cu0.15O3 phases from KOH flux at 400 degreesC. Alkali-doped LaNiO3 can be prepared in KOH, but not in NaOH flux and La2NiO4 can be prepared in NaOH, but not in KOH flux. The flux-grown oxides were characterized by powder X-ray Rietveld profile analysis and electron microscopy. Sodium doped La2NiO4 crystallizes in orthorhombic structure and potassium doped LaNiO3-phases crystallizes in rhombohedral structure. La1.95Na0.05NiO4 is weakly paramagnetic and semiconducting while La0.97K0.03NiO3 and La0.95K0.05Ni0.85Cu0.15O3 show Pauli paramagnetic and metallic behavior. (C) 2002 Editions scientifiques et medicales Elsevier SAS. All rights reserved.
Resumo:
The crystal structures of the solid solutions of Bi3-xLaxTiNbO9 (0 less than or equal to x less than or equal to 1) have been analyzed by powder X-ray diffraction with supporting evidence from selected area electron diffraction (SAD). The structure of the starting member (x = 0) is verified to be in the orthorhombic space group A2(1) am while the end member (x = 1) is determined to crystallize in the centrosymmetric orthorhombic space group Pmcb. The structure of x = 1 phase is solved by ab initio powder diffraction. The intermediate compositions belong to the space group A2(1) am as confirmed by Rietveld refinements. Rietveld refinements on all the compositions reveal that the La3+ ion is disordered only in the A site and not in the [Bi2O2](2+) layer. The tilt in the Ti/NbO6 octahedra decreases with increasing x. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
With the advent of Internet, video over IP is gaining popularity. In such an environment, scalability and fault tolerance will be the key issues. Existing video on demand (VoD) service systems are usually neither scalable nor tolerant to server faults and hence fail to comply to multi-user, failure-prone networks such as the Internet. Current research areas concerning VoD often focus on increasing the throughput and reliability of single server, but rarely addresses the smooth provision of service during server as well as network failures. Reliable Server Pooling (RSerPool), being capable of providing high availability by using multiple redundant servers as single source point, can be a solution to overcome the above failures. During a possible server failure, the continuity of service is retained by another server. In order to achieve transparent failover, efficient state sharing is an important requirement. In this paper, we present an elegant, simple, efficient and scalable approach which has been developed to facilitate the transfer of state by the client itself, using extended cookie mechanism, which ensures that there is no noticeable change in disruption or the video quality.
Resumo:
Radially-homogeneous and single-phase InAsxSb(1−x) crystals, up to 5.0 at. % As concentration, have been grown using the rotatory Bridgman method. Single crystallinity has been confirmed by x-ray and electron diffraction studies. Infrared transmission spectra show a continuous decrease in optical energy gap with the increase of arsenic content in InSb. The measured values of mobility and carrier density at room temperature (for x = .05) are 5.6×104 cm2/V s and 2.04×1016 cm−3, respectively.