948 resultados para GLUCURONIDE METABOLITE
Resumo:
The endocrine disruption hypothesis asserts that exposure to small amounts of some chemicals in the environment may interfere with the endocrine system and lead to harmful effects in wildlife and humans. Many of these chemicals may interact with members of the nuclear receptor superfamily. Peroxisome proliferator-activated receptors (PPARs) are such candidate members, which interact with many different endogenous and exogenous lipophilic compounds. More particularly, the roles of PPARs in lipid and carbohydrate metabolism raise the question of their activation by a sub-class of pollutants, tentatively named "metabolic disrupters". Phthalates are abundant environmental micro-pollutants in Europe and North America and may belong to this class. Mono-ethyl-hexyl-phthalate (MEHP), a metabolite of the widespread plasticizer di-ethyl-hexyl-phthalate (DEHP), has been found in exposed organisms and interacts with all three PPARs. A thorough analysis of its interactions with PPARgamma identified MEHP as a selective PPARgamma modulator, and thus a possible contributor to the obesity epidemic.
Resumo:
The pharmacokinetic profile of imatinib has been assessed in healthy subjects and in population studies among thousands of patients with CML or GIST. Imatinib is rapidly and extensively absorbed from the GI tract, reaching a peak plasma concentration (Cmax) within 1-4 h following administration. Imatinib bioavailability is high (98%) and independent of food intake. Imatinib undergoes rapid and extensive distribution into tissues, with minimal penetration into the central nervous system. In the circulation, it is approximately 95% bound to plasma proteins, principally α1-acid glycoprotein (AGP) and albumin. Imatinib undergoes metabolism in the liver via the cytochrome P450 enzyme system (CYP), with CYP3A4 being the main isoenzyme involved. The N-desmethyl metabolite CGP74588 is the major circulating active metabolite. The typical elimination half-life for imatinib is approximately 14-22 h. Imatinib is characterized by large inter-individual pharmacokinetic variability, which reflects in a wide spread of concentrations observed under standard dosage. Besides adherence, several factors have been shown to influence this variability, especially demographic characteristics (sex, age, body weight and disease diagnosis), blood count characteristics, enzyme activity (mainly CYP3A4), drug interactions, activity of efflux transporters and plasma levels of AGP. Additionally, recent retrospective studies have shown that drug exposure, reflected in either the area under the concentration-time curve (AUC) or more conveniently the trough level (Cmin), correlates with treatment outcomes. Increased toxicity has been associated with high plasma levels, and impaired clinical efficacy with low plasma levels. While no upper concentration limit has been formally established, a lower limit for imatinib Cmin of about 1000 ng/mL has been proposed repeatedly for improving outcomes in CML and GIST patients. Imatinib is licensed for use in chronic phase CML and GIST at a fixed dose of 400 mg once daily (600 mg in some other indications) despite substantial pharmacokinetic variability caused by both genetic and acquired factors. The dose can be modified on an individual basis in cases of insufficient response or substantial toxic effects. Imatinib would, however, meet traditional criteria for a therapeutic drug monitoring (TDM) program: long-term therapy, measurability, high inter-individual but restricted intra-individual variability, limited pharmacokinetic predictability, effect of drug interactions, consistent association between concentration and response, suggested therapeutic threshold, reversibility of effect and absence of early markers of efficacy and toxic effects. Large-scale, evidence-based assessments of drug concentration monitoring are therefore still warranted for the personalization of imatinib treatment.
Resumo:
The renin-angiotensin system is a major contributor to the pathophysiology of cardiovascular diseases such as congestive heart failure and hypertension. Antagonizing angiotensin (Ang) II at the receptor site may produce fewer side effects than inhibition of the promiscuous converting enzyme. The present study was designed to assess in healthy human subjects the effect of LRB081, a new orally active AT1-receptor antagonist, on the pressor action of exogenous Ang II. At the same time, plasma hormones and drug levels were monitored. At 1-week intervals and in a double-blind randomized fashion, 8 male volunteers received three doses of LRB081 (10, 40, and 80 mg) and placebo. Blood pressure (BP) was measured at a finger by photoplethysmograph. The peak BP response to intravenous injection of a standard dose of Ang II was determined before and for < or = 24 h after administration of an oral dose of LRB081 or placebo. After drug administration, the blood BP response to Ang II was expressed in percent of the response before drug administration. At the same time, plasma renin activity (PRA), Ang II, aldosterone, catecholamine (radioassays), and drug levels (by high-performance liquid chromatography) were monitored. After LRB081 administration, a dose dependent inhibition of the BP response to Ang II was observed. Maximal inhibition of the systolic BP response was 54 +/- 3 (mean +/- SEM), 63 +/- 2, and 93 +/- 1% with 10, 40, and 80 mg LRB081, respectively. The time to peak was 3 h for 6 subjects and 4 and 6 h for 2 others. Preliminary plasma half-life (t1/2) was calculated at 2 h. With the highest dose, the inhibition remained significant for 24 h (31 +/- 5%, p < 0.05). Maximal BP-blocking effect and maximal plasma drug level coincided, suggesting that the unmetabolized LRB081 is responsible for the antagonistic effect. PRA and Ang II increased dose dependently after LRB081 intake. Aldosterone, epinephrine, and norepinephrine concentrations remained unchanged. No clinically significant adverse reaction was observed during the study. LRB081 is a well-tolerated, orally active, potent, and long-acting Ang II receptor antagonist. Unlike in the case of losartan, no active metabolite of LRB081 has been shown to be responsible for the main effects.
Resumo:
Extremely preterm infants commonly show brain injury with long-term structural and functional consequences. Three-day-old (P3) rat pups share some similarities in terms of cerebral development with the very preterm infant (born at 24-28 weeks of gestation). The aim of this study was to assess longitudinally the cerebral structural and metabolic changes resulting from a moderate neonatal hypoxic ischemic injury in the P3 rat pup using high-field (9.4 T) MRI and localized (1) H magnetic resonance spectroscopy techniques. The rats were scanned longitudinally at P3, P4, P11, and P25. Volumetric measurements showed that the percentage of cortical loss in the long term correlated with size of damage 6 h after hypoxia-ischemia, male pups being more affected than female. The neurochemical profiles revealed an acute decrease of most of metabolite concentrations and an increase in lactate 24 h after hypoxia-ischemia, followed by a recovery phase leading to minor metabolic changes at P25 in spite of an abnormal brain development. Further, the increase of lactate concentration at P4 correlated with the cortical loss at P25, giving insight into the early prediction of long-term cerebral alterations following a moderate hypoxia-ischemia insult that could be of interest in clinical practice.
Resumo:
Lignin is the defining constituent of wood and the second most abundant natural polymer on earth. Lignin is produced by the oxidative coupling of three monolignols: p-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol. Monolignols are synthesized via the phenylpropanoid pathway and eventually polymerized in the cell wall by peroxidases and laccases. However, the mechanism whereby monolignols are transported from the cytosol to the cell wall has remained elusive. Here we report the discovery that AtABCG29, an ATP-binding cassette transporter, acts as a p-coumaryl alcohol transporter. Expression of AtABCG29 promoter-driven reporter genes and a Citrine-AtABCG29 fusion construct revealed that AtABCG29 is targeted to the plasma membrane of the root endodermis and vascular tissue. Moreover, yeasts expressing AtABCG29 exhibited an increased tolerance to p-coumaryl alcohol by excreting this monolignol. Vesicles isolated from yeasts expressing AtABCG29 exhibited a p-coumaryl alcohol transport activity. Loss-of-function Arabidopsis mutants contained less lignin subunits and were more sensitive to p-coumaryl alcohol. Changes in secondary metabolite profiles in abcg29 underline the importance of regulating p-coumaryl alcohol levels in the cytosol. This is the first identification of a monolignol transporter, closing a crucial gap in our understanding of lignin biosynthesis, which could open new directions for lignin engineering.
Resumo:
The metabolism of Δ(9)-tetrahydrocannabinol (THC) is relatively complex, and over 80 metabolites have been identified. However, much less is known about the formation and fate of cannabinoid conjugates. Bile excretion is known to be an important route for the elimination of phase II metabolites. A liquid chromatography-tandem mass spectrometry LC-MS/MS procedure for measuring cannabinoids in oral fluid was adapted, validated and applied to 10 bile samples. THC, 11-hydroxy-Δ(9)-tetrahydrocannabinol (11-OH-THC), 11-nor-9-carboxy-Δ(9)-tetrahydrocannabinol (THCCOOH), cannabinol (CBN), cannabidiol (CBD), Δ(9)-tetrahydrocannabinolic acid A (THC-A), 11-nor-9-carboxy-Δ(9)-tetrahydrocannabinol glucuronide (THCCOOH-gluc) and Δ(9)-tetrahydrocannabinol glucuronide (THC-gluc) were determined following solid-phase extraction and LC-MS/MS. High concentrations of THCCOOH-gluc were found in bile samples (range: 139-21,275 ng/mL). Relatively high levels of THCCOOH (7.7-1548 ng/mL) and THC-gluc (38-1366 ng/mL) were also measured. THC-A, the plant precursor of THC, was the only cannabinoid that was not detected. These results show that biliary excretion is an important route of elimination for cannabinoids conjugates and that their enterohepatic recirculation is a significant factor to consider when analyzing blood elimination profiles of cannabinoids. Furthermore, we suggest that the bile is the matrix of choice for the screening of phase II cannabinoid metabolites.
Resumo:
Knowledge of T(1) relaxation times can be important for accurate relative and absolute quantification of brain metabolites, for sensitivity optimizations, for characterizing molecular dynamics, and for studying changes induced by various pathological conditions. (1)H T(1) relaxation times of a series of brain metabolites, including J-coupled ones, were determined using a progressive saturation (PS) technique that was validated with an adiabatic inversion-recovery (IR) method. The (1)H T(1) relaxation times of 16 functional groups of the neurochemical profile were measured at 14.1T and 9.4T. Overall, the T(1) relaxation times found at 14.1T were, within the experimental error, identical to those at 9.4T. The T(1)s of some coupled spin resonances of the neurochemical profile were measured for the first time (e.g., those of gamma-aminobutyrate [GABA], aspartate [Asp], alanine [Ala], phosphoethanolamine [PE], glutathione [GSH], N-acetylaspartylglutamate [NAAG], and glutamine [Gln]). Our results suggest that T(1) does not increase substantially beyond 9.4T. Furthermore, the similarity of T(1) among the metabolites (approximately 1.5 s) suggests that T(1) relaxation time corrections for metabolite quantification are likely to be similar when using rapid pulsing conditions. We therefore conclude that the putative T(1) increase of metabolites has a minimal impact on sensitivity when increasing B(0) beyond 9.4T.
Resumo:
Steady state plasma concentrations of the (L)- and (D)-enantiomers of trimipramine (TRI), desmethyltrimipramine (DTRI), 2-hydroxytrimipramine (TRIOH) and 2-hydroxydesmethyl-trimipramine (DTRIOH) were measured in 27 patients receiving between 300 and 400 mg/day racemic TRI. The patients were phenotyped with dextromethorphan and mephenytoin, and the 8-hour urinary ratios of dextromethorphan/dextrorphan, dextromethorphan/3-methoxymorphinan, and (S)-mephenytoin/(R)mephenytoin were used as markers of cytochrome P-450IID6 (CYP2D6), CYP3A4/5 and CYP2C19 activities, respectively. One patient was a CYP2D6 and one was a CYP2C19 poor metabolizer. A stereoselectivity in the metabolism of TRI has been found, with a preferential N-demethylation of (D)-TRI and a preferential hydroxylation of (L)-TRI. CYP2D6 appears to be involved in the 2-hydroxylation of (L)-TRI, (L)DTRI and (D)-DTRI, but not of (D)-TRI, as significant correlations were measured between the dextromethorphan/dextrorphan ratios and the (L)-TRI/(L)-TRIOH (r = 0.45, p = 0.019), the (L)-DTRI/(L)-DTRIOH (r = 0.47, p = 0.014), and the (D)-DTRI/(D)-DTRIOH (r = 0.51, p = 0.006), but not with the (D)-TRI/(D)-TRIOH ratios (r = 0.29, NS). CYP2C19, but not CYP2D6, appears to be involved in the demethylation pathway, with a stereoselectivity toward the (D)-enantiomer of TRI, as a significant positive correlation was calculated between the mephenytoin (S)/(R) ratios and the concentrations to dose-to-weight ratios of (D)-TRI (r = 0.69, p = 0.00006). CYP3A4/5 appears to be involved in the metabolism of (L)-TRI to a presently not determined metabolite. The CYP2D6 poor metabolizer had the highest (L)-DTRI and (D)-DTRI concentrations to dose-to-weight ratios, and the CYP2C19 poor metabolizer had the highest (L)-TRI and (D)-TRI concentrations to dose-to-weight ratios of the group.
Resumo:
SUMMARYIn order to increase drug safety we must better understand how medication interacts with the body of our patients and this knowledge should be made easily available for the clinicians prescribing the medication. This thesis contributes to how the knowledge of some drug properties can increase and how to make information readily accessible for the medical professionals. Furthermore it investigates the use of Therapeutic drug monitoring, drug interaction databases and pharmacogenetic tests in pharmacovigilance.Two pharmacogenetic studies in the naturalistic setting of psychiatric in-patients clinics have been performed; one with the antidepressant mirtazapine, the other with the antipsychotic clozapine. Forty-five depressed patients have been treated with mirtazapine and were followed for 8 weeks. The therapeutic effect was as seen in other previous studies. Enantioselective analyses could confirm an influence of age, gender and smoking in the pharmacokinetics of mirtazapine; it showed a significant influence of the CYP2D6 genotype on the antidepressant effective S-enantiomer, and for the first time an influence of the CYP2B6 genotype on the plasma concentrations of the 8-OH metabolite was found. The CYP2B6*/*6 genotype was associated to better treatment response. A detailed hypothesis of the metabolic pathways of mirtazapine is proposed. In the second pharmacogenetic study, analyses of 75 schizophrenic patients treated with clozapine showed the influence of CYP450 and ABCB1 genotypes on its pharmacokinetics. For the first time we could demonstrate an in vivo effect of the CYP2C19 genotype and an influence of P-glycoprotein on the plasma concentrations of clozapine. Further we confirmed in vivo the prominent role of CYP1A2 in the metabolism of clozapine.Identifying risk factors for the occurrence of serious adverse drug reactions (SADR) would allow a more individualized and safer drug therapy. SADR are rare events and therefore difficult to study. We tested the feasibility of a nested matched case-control study to examine the influence of high drug plasma levels and CYP2D6 genotypes on the risk to experience an SADR. In our sample we compared 62 SADR cases with 82 controls; both groups were psychiatric patients from the in-patient clinic Königsfelden. Drug plasma levels of >120% of the upper recommended references could be identified as a risk factor with a statistically significant odds ratio of 3.5, a similar trend could be seen for CYP2D6 poor metaboliser. Although a matched case-control design seems a valid method, 100% matching is not easy to perform in a relative small cohort of one in-patient clinic. However, a nested case-control study is feasible.On the base of the experience gained in the AMSP+ study and the fact that we have today only sparse data indicating that routine drug plasma concentration monitoring and/or pharmacogenetic testing in psychiatry are justified to minimize the risk for ADR, we developed a test algorithm named "TDM plus" (TDM plus interaction checks plus pharmacogenetic testing).Pharmacovigilance programs such as the AMSP project (AMSP = Arzneimittelsicherheit in der Psychiatrie) survey psychiatric in-patients in order to collect SADR and to detect new safety signals. Case reports of such SADR are, although anecdotal, valuable to illustrate rare clinical events and sometimes confirm theoretical assumptions of e.g. drug interactions. Seven pharmacovigilance case reports are summarized in this thesis.To provide clinicians with meaningful information on the risk of drug combinations, during the course of this thesis the internet based drug interaction program mediQ.ch (in German) has been developed. Risk estimation is based on published clinical and pharmacological information of single drugs and alimentary products, including adverse drug reaction profiles. Information on risk factors such as renal and hepatic insufficiency and specific genotypes are given. More than 20'000 drug pairs have been described in detail. Over 2000 substances with their metabolic and transport pathways are included and all information is referenced with links to the published scientific literature or other information sources. Medical professionals of more than 100 hospitals and 300 individual practitioners do consult mediQ.ch regularly. Validations with comparisons to other drug interaction programs show good results.Finally, therapeutic drug monitoring, drug interaction programs and pharmacogenetic tests are helpful tools in pharmacovigilance and should, in absence of sufficient routine tests supporting data, be used as proposed in our TDM plus algorithm.RESUMEPour améliorer la sécurité d'emploi des médicaments il est important de mieux comprendre leurs interactions dans le corps des patients. Ensuite le clinicien qui prescrit une pharmacothérapie doit avoir un accès simple à ces informations. Entre autres, cette thèse contribue à mieux connaître les caractéristiques pharmacocinétiques de deux médicaments. Elle examine aussi l'utilisation de trois outils en pharmacovigilance : le monitorage thérapeutique des taux plasmatiques des médicaments (« therapeutic drug monitoring »), un programme informatisé d'estimation du risque de combinaisons médicamenteuses, et enfin des tests pharmacogénétiques.Deux études cliniques pharmacogénétiques ont été conduites dans le cadre habituel de clinique psychiatrique : l'une avec la mirtazapine (antidépresseur), l'autre avec la clozapine (antipsychotique). On a traité 45 patients dépressifs avec de la mirtazapine pendant 8 semaines. L'effet thérapeutique était semblable à celui des études précédentes. Nous avons confirmé l'influence de l'âge et du sexe sur la pharmacocinétique de la mirtazapine et la différence dans les concentrations plasmatiques entre fumeurs et non-fumeurs. Au moyen d'analyses énantiomères sélectives, nous avons pu montrer une influence significative du génotype CYP2D6 sur l'énantiomère S+, principalement responsable de l'effet antidépresseur. Pour la première fois, nous avons trouvé une influence du génotype CYP2B6 sur les taux plasmatiques de la 8-OH-mirtazapine. Par ailleurs, le génotype CYP2B6*6/*6 était associé à une meilleure réponse thérapeutique. Une hypothèse sur les voies métaboliques détaillées de la mirtazapine est proposée. Dans la deuxième étude, 75 patients schizophrènes traités avec de la clozapine ont été examinés pour étudier l'influence des génotypes des iso-enzymes CYP450 et de la protéine de transport ABCB1 sur la pharmacocinétique de cet antipsychotique. Pour la première fois, on a montré in vivo un effet des génotypes CYP2C19 et ABCB1 sur les taux plasmatiques de la clozapine. L'importance du CYP1A2 dans le métabolisme de la clozapine a été confirmée.L'identification de facteurs de risques dans la survenue d'effets secondaire graves permettrait une thérapie plus individualisée et plus sûre. Les effets secondaires graves sont rares. Dans une étude de faisabilité (« nested matched case-control design » = étude avec appariement) nous avons comparé des patients avec effets secondaires graves à des patients-contrôles prenant le même type de médicaments mais sans effets secondaires graves. Des taux plasmatiques supérieurs à 120% de la valeur de référence haute sont associés à un risque avec « odds ratio » significatif de 3.5. Une tendance similaire est apparue pour le génotype du CYP2D6. Le « nested matched case-control design » semble une méthode valide qui présente cependant une difficulté : trouver des patients-contrôles dans le cadre d'une seule clinique psychiatrique. Par contre la conduite d'une « nested case-control study » sans appariement est recommandable.Sur la base de notre expérience de l'étude AMSP+ et le fait que nous disposons que de peux de données justifiant des monitorings de taux plasmatiques et/ou de tests pharmacogénétiques de routine, nous avons développé un test algorithme nommé « TDMplus » (TDM + vérification d'interactions médicamenteuses + tests pharmacogénétique).Des programmes de pharmacovigilances comme celui de l'AMSP (Arzneimittelsicherheit in der Psychiatrie = pharmacovigilance en psychiatrie) collectent les effets secondaires graves chez les patients psychiatriques hospitalisés pour identifier des signaux d'alertes. La publication de certains de ces cas même anecdotiques est précieuse. Elle décrit des événements rares et quelques fois une hypothèse sur le potentiel d'une interaction médicamenteuse peut ainsi être confirmée. Sept publications de cas sont résumées ici.Dans le cadre de cette thèse, on a développé un programme informatisé sur internet (en allemand) - mediQ.ch - pour estimer le potentiel de risques d'une interaction médicamenteuse afin d'offrir en ligne ces informations utiles aux cliniciens. Les estimations de risques sont fondées sur des informations cliniques (y compris les profils d'effets secondaires) et pharmacologiques pour chaque médicament ou substance combinés. Le programme donne aussi des informations sur les facteurs de risques comme l'insuffisance rénale et hépatique et certains génotypes. Actuellement il décrit en détail les interactions potentielles de plus de 20'000 paires de médicaments, et celles de 2000 substances actives avec leurs voies de métabolisation et de transport. Chaque information mentionne sa source d'origine; un lien hypertexte permet d'y accéder. Le programme mediQ.ch est régulièrement consulté par les cliniciens de 100 hôpitaux et par 300 praticiens indépendants. Les premières validations et comparaisons avec d'autres programmes sur les interactions médicamenteuses montrent de bons résultats.En conclusion : le monitorage thérapeutique des médicaments, les programmes informatisés contenant l'information sur le potentiel d'interaction médicamenteuse et les tests pharmacogénétiques sont de précieux outils en pharmacovigilance. Nous proposons de les utiliser en respectant l'algorithme « TDM plus » que nous avons développé.
Resumo:
In vivo localized proton magnetic resonance spectroscopy (1H MRS) became a powerful and unique technique to non-invasively investigate brain metabolism of rodents and humans. The main goal of 1H MRS is the reliable quantification of concentrations of metabolites (neurochemical profile) in a well-defined region of the brain. The availability of very high magnetic field strengths combined with the possibility of acquiring spectra at very short echo time have dramatically increased the number of constituents of the neurochemical profile. The quantification of spectra measured at short echo times is complicated by the presence of macromolecule signals of particular importance at high magnetic fields. An error in the macromolecule estimation can lead to substantial errors in the obtained neurochemical profile. The purpose of the present review is to overview methods of high field 1H MRS with a focus on the metabolite quantification, in particular in handling signals of macromolecules. Three main approaches of handling signals of macromolecules are described, namely mathematical estimation of macromolecules, measurement of macromolecules in vivo, and direct acquisition of the in vivo spectrum without the contribution of macromolecules.
Resumo:
Tasosartan is a long-acting angiotensin II (AngII) receptor blocker. Its long duration of action has been attributed to its active metabolite enoltasosartan. In this study we evaluated the relative contribution of tasosartan and enoltasosartan to the overall pharmacological effect of tasosartan. AngII receptor blockade effect of single doses of tasosartan (100 mg p.o. and 50 mg i.v) and enoltasosartan (2.5 mg i.v.) were compared in 12 healthy subjects in a randomized, double blind, three-period crossover study using two approaches: the in vivo blood pressure response to exogenous AngII and an ex vivo AngII radioreceptor assay. Tasosartan induced a rapid and sustained blockade of AngII subtype-1 (AT1) receptors. In vivo, tasosartan (p.o. or i.v.) blocked by 80% AT1 receptors 1 to 2 h after drug administration and still had a 40% effect at 32 h. In vitro, the blockade was estimated to be 90% at 2 h and 20% at 32 h. In contrast, the blockade induced by enoltasosartan was markedly delayed and hardly reached 60 to 70% despite the i.v. administration and high plasma levels. In vitro, the AT1 antagonistic effect of enoltasosartan was markedly influenced by the presence of plasma proteins, leading to a decrease in its affinity for the receptor and a slower receptor association rate. The early effect of tasosartan is due mainly to tasosartan itself with little if any contribution of enoltasosartan. The antagonistic effect of enoltasosartan appears later. The delayed in vivo blockade effect observed for enoltasosartan appears to be due to a high and tight protein binding and a slow dissociation process from the carrier.
Resumo:
High Resolution Magic Angle Spinning (HR-MAS) NMR allows metabolic characterization of biopsies. HR-MAS spectra from tissues of most organs show strong lipid contributions that are overlapping metabolite regions, which hamper metabolite estimation. Metabolite quantification and analysis would benefit from a separation of lipids and small metabolites. Generally, a relaxation filter is used to reduce lipid contributions. However, the strong relaxation filter required to eliminate most of the lipids also reduces the signals for small metabolites. The aim of our study was therefore to investigate different diffusion editing techniques in order to employ diffusion differences for separating lipid and small metabolite contributions in the spectra from different organs for unbiased metabonomic analysis. Thus, 1D and 2D diffusion measurements were performed, and pure lipid spectra that were obtained at strong diffusion weighting (DW) were subtracted from those obtained at low DW, which include both small metabolites and lipids. This subtraction yielded almost lipid free small metabolite spectra from muscle tissue. Further improved separation was obtained by combining a 1D diffusion sequence with a T2-filter, with the subtraction method eliminating residual lipids from the spectra. Similar results obtained for biopsies of different organs suggest that this method is applicable in various tissue types. The elimination of lipids from HR-MAS spectra and the resulting less biased assessment of small metabolites have potential to remove ambiguities in the interpretation of metabonomic results. This is demonstrated in a reproducibility study on biopsies from human muscle.
Resumo:
AIMS: To develop reporter constructs based on stable and unstable variants of the green fluorescent protein (GFP) for monitoring balanced production of antifungal compounds that are crucial for the capacity of the root-colonizing Pseudomonas fluorescens strain CHA0 to control plant diseases caused by soil-borne pathogenic fungi. METHODS AND RESULTS: Pseudomonas fluorescens CHA0 produces the three antifungal metabolites 2,4-diacetylphloroglucinol (DAPG), pyoluteorin (PLT) and pyrrolnitrin (PRN). The gfp[mut3] and gfp[AAV] reporter genes were fused to the promoter regions of the DAPG, PLT and PRN biosynthetic genes. The reporter fusions were then used to follow the kinetics of expression of the three antifungal metabolites in a microplate assay. DAPG and PLT were found to display an inverse relationship in which each metabolite activates its own biosynthesis while repressing the synthesis of the other metabolite. PRN appears not to be involved in this balance. However, the microbial and plant phenolic metabolite salicylate was found to interfere with the expression of both DAPG and PLT. CONCLUSIONS: The results obtained provide evidence that P. fluorescens CHA0 may keep the antifungal compounds DAPG and PLT at a fine-tuned balance that can be affected by certain microbial and plant phenolics. SIGNIFICANCE AND IMPACT OF THE STUDY: To our knowledge, the present study is the first to use stable and unstable GFP variants to study antibiotic gene expression in a biocontrol pseudomonad. The developed reporter fusions will be a highly valuable tool to study in situ expression of this bacterial biocontrol trait on plant roots, i.e. at the site of pathogen suppression.
Resumo:
Tribulus terrestris is a nutritional supplement highly debated regarding its physiological and actual effects on the organism. The main claimed effect is an increase of testosterone anabolic and androgenic action through the activation of endogenous testosterone production. Even if this biological pathway is not entirely proven, T. terrestris is regularly used by athletes. Recently, the analysis of two female urine samples by GC/C/IRMS (gas chromatography/combustion/isotope-ratio-mass-spectrometry) conclusively revealed the administration of exogenous testosterone or its precursors, even if the testosterone glucuronide/epitestosterone glucuronide (T/E) ratio and steroid marker concentrations were below the cut-off values defined by World Anti-Doping Agency (WADA). To argue against this adverse analytical finding, the athletes recognized having used T. terrestris in their diet. In order to test this hypothesis, two female volunteers ingested 500 mg of T. terrestris, three times a day and for two consecutive days. All spot urines were collected during 48 h after the first intake. The (13)C/(12)C ratio of ketosteroids was determined by GC/C/IRMS, the T/E ratio and DHEA concentrations were measured by GC/MS and LH concentrations by radioimmunoassay. None of these parameters revealed a significant variation or increased above the WADA cut-off limits. Hence, the short-term treatment with T. terrestris showed no impact on the endogenous testosterone metabolism of the two subjects.
Resumo:
In a case of a driving ability assessment, hair analysis for ethyl glucuronide (EtG) was requested by the authorities. The person concerned denied alcohol consumption and did not present any clinical sign of alcoholism. However, EtG was found in concentrations of up to 910pg/mg in hair from different sampling dates suggesting an excessive drinking behavior. The person declared to use a hair lotion on a regularly base. To evaluate a possible effect of the hair lotion, prospective blood and urine controls as well as hair sampling of scalp and pubic hair were performed. The traditional clinical biomarkers of ethanol consumption, CDT and GGT, were inconspicuous in three blood samples taken. EtG was not detected in all collected urine samples. The hair lotion was transmitted to our laboratory. The ethanol concentration in this lotion was determined with 35g/L. The EtG immunoassay gave a positive result indicating EtG, which could be confirmed by GC-MS/MS-NCI. In a follow-up experiment the lotion was applied to the hair of a volunteer over a period of six weeks. After this treatment, EtG could be measured in the hair at a concentration of 72pg/mg suggesting chronic and excessive alcohol consumption. Overnight incubation of EtG free hair in the lotion yielded an EtG concentration of 140pg/mg. In the present case, the positive EtG hair findings could be interpreted as the result of an EtG containing hair care product. To our knowledge, the existence of such a product has not yet been reported, and it is exceptionally unusual to find EtG in cosmetics. Therefore, external sources for hair contamination should always be taken into account when unusual cosmetic treatment is mentioned. In those cases, it is recommended to analyze the hair product for a possible contamination with EtG. The analysis of body hair can help to reveal problems occurring from cosmetic treatment of head hair. As a consequence, the assessment of drinking behavior should be based on more than one diagnostic parameter.