978 resultados para GENOTYPE E
Resumo:
Introduction: Porphyromonas gingivalis is associated with periodontitis and exhibit a wide array of virulence factors, including fimbriae which is encoded by the FimA gene representing six known genotypes. Objetive: To identify FimA genotypes of P. gingivalis in subjects from Cali-Colombia, including the co-infection with Aggregatibacter actinomycetemcomitans , Treponema denticola , and Tannerella forsythia . Methods: Subgingival samples were collected from 151 people exhibiting diverse periodontal condition. The occurrence of P. gingivalis, FimA genotypes and other bacteria was determined by PCR. Results: Porphyromonas gingivalis was positive in 85 patients. Genotype FimA II was more prevalent without reach significant differences among study groups (54.3%), FimA IV was also prevalent in gingivitis (13.0%). A high correlation (p= 0.000) was found among P. gingivalis, T. denticola, and T. forsythia co-infection. The FimA II genotype correlated with concomitant detection of T. denticola and T. forsythia. Conclusions: Porphyromonas gingivalis was high even in the healthy group at the study population. A trend toward a greater frequency of FimA II genotype in patients with moderate and severe periodontitis was determined. The FimA II genotype was also associated with increased pocket depth, greater loss of attachment level, and patients co-infected with T. denticola and T. forsythia.
Resumo:
Otto-von-Guericke-Universität Magdeburg, Fakultät für Naturwissenschaften, Dissertation, 2016
Resumo:
The diagnosis of mixed genotype hepatitis C virus (HCV) infection is rare and information on incidence in the UK, where genotypes 1a and 3 are the most prevalent, is sparse. Considerable variations in the efficacies of direct-acting antivirals (DAAs) for the HCV genotypes have been documented and the ability of DAAs to treat mixed genotype HCV infections remains unclear, with the possibility that genotype switching may occur. In order to estimate the prevalence of mixed genotype 1a/3 infections in Scotland, a cohort of 512 samples was compiled and then screened using a genotype-specific nested PCR assay. Mixed genotype 1a/3 infections were found in 3.8% of samples tested, with a significantly higher prevalence rate of 6.7% (p<0.05) observed in individuals diagnosed with genotype 3 infections than genotype 1a (0.8%). An analysis of the samples using genotypic-specific qPCR assays found that in two-thirds of samples tested, the minor strain contributed <1% of the total viral load. The potential of deep sequencing methods for the diagnosis of mixed genotype infections was assessed using two pan-genotypic PCR assays compatible with the Illumina MiSeq platform that were developed targeting the E1-E2 and NS5B regions of the virus. The E1-E2 assay detected 75% of the mixed genotype infections, proving to be more sensitive than the NS5B assay which identified only 25% of the mixed infections. Studies of sequence data and linked patient records also identified significantly more neurological disorders in genotype 3 patients. Evidence of distinctive dinucleotide expression within the genotypes was also uncovered. Taken together these findings raise interesting questions about the evolutionary history of the virus and indicate that there is still more to understand about the different genotypes. In an era where clinical medicine is frequently more personalised, the development of diagnostic methods for HCV providing increased patient stratification is increasingly important. This project has shown that sequence-based genotyping methods can be highly discriminatory and informative, and their use should be encouraged in diagnostic laboratories. Mixed genotype infections were challenging to identify and current deep sequencing methods were not as sensitive or cost-effective as Sanger-based approaches in this study. More research is needed to evaluate the clinical prognosis of patients with mixed genotype infection and to develop clinical guidelines on their treatment.
Resumo:
Beans fromcowpea cultivars fertilized with mineral N or inoculated with various rhizobium strainsmay contain different nitrogen concentrations and nitrogen metabolite composition, which affects the beans? defense mechanisms against pests. In this study, the population growth of Callosobruchus maculatus reared on beans from four cowpea cultivars fertilized with different nitrogen sources was evaluated. The factors tested were beans from four cowpea cultivars and seven different nitrogen sources: mineral N fertilization, inoculation with five strains of symbiotic diazotrophic bacteria, and soil nitrogen (absolute control).
Resumo:
The first study was designed to assess whether the involvement of the peripheral nervous system (PNS) belongs to the phenotypic spectrum of sporadic Creutzfeldt-Jakob disease (sCJD). To this aim, we reviewed medical records of 117 sCJDVV2, 65 sCJDMV2K, and 121 sCJDMM(V)1 subjects for symptoms/signs and neurophysiological data. We looked for the presence of PrPSc in postmortem PNS samples from 14 subjects by western blotting and real-time quaking-induced conversion (RT-QuIC) assay. Seventy-five (41.2%) VV2-MV2K patients, but only 11 (9.1%) MM(V)1, had symptoms/signs suggestive of PNS involvement and neuropathy was documented in half of the VV2-MV2K patients tested. RT-QuIC was positive in all PNS samples, whereas western blotting detected PrPSc in the sciatic nerve in only one VV2 and one MV2K. These results support the conclusion that peripheral neuropathy, likely related to PrPSc deposition, belongs to the phenotypic spectrum of sCJDMV2K and VV2, the two variants linked to the V2 strain. The second study aimed to characterize the genetic/molecular determinants of phenotypic variability in genetic CJD (gCJD). To this purpose, we compared 157 cases of gCJD to 300 of sCJD. We analyzed: demographic aspects, neurological symptoms/signs, histopathologic features and biochemical characteristics of PrPSc. The results strongly indicated that the clinicopathological phenotypes of gCJD largely overlap with those of sCJD and that the genotype at codon 129 in cis with the mutation (i.e. haplotype) contributes more than the latter to the disease phenotype. Some mutations, however, cause phenotypic variations including haplotype-specific patterns of PrPSc deposition such as the “dense” synaptic pattern (E200K-129M), the intraneuronal dots (E200K-129V), and the linear stripes perpendicular to the surface in the molecular layer of cerebellum (OPRIs-129M). Overall, these results suggest that in gCJD PRNP mutations do not cause the emergence of novel prion strains, but rather confer increased susceptibility to the disease in conjunction with “minor” clinicopathological variations.
Resumo:
Dairy industries are asked to be increasingly competitive and efficient. Despite the increasing trend in milk yield and protein content during the last decade genetic selection, milk coagulation ability has diminished and even if the absolute amount of cheese produced has increased, the relative cheese yield from a set amount of milk, has decreased. As casein content and variants, along with milk clotting properties (MCP) are determined to a large extent at DNA level, genetic selection and embryo transfer can provide efficacious tools to reverse this trend and achieve improvements. The aim of the proposed research was to determine how rapidly and to what extent milk coagulation properties could be improved by using embryo transfer (ET) as a tool to increase the frequency of k-casein BB genotype cattle and reducing A and E variants in an Italian Holstein herd with a low prevalence of the favourable genotype. In the effort to optimize superovulation protocols and results, synchronization of wave emergence was performed through manual transrectal ablation of the largest (dominant) ovarian follicle on days 7 or 8 of the cycle (estrus = day 0); different drugs and dosage for the superstimulation protocol were experimented trying to overcome the negative effects of stress and the perturbance of LH secretion in superovulated highly producing lactating cows and the use of SexedULTRA™ sex-sorted semen, for artificial insemination of superovulated cows was reported for the first time. The selection program carried out in this research, gave evidence and gathered empirical data of feasible genetic improvements in cheesemaking ability of milk by means of k-casein BB selection. In conclusion, in this project, selection of k-casein BB genotype markedly enhanced cheese-making properties of milk, providing an impetus to include milk coagulation traits in genetic selection and breeding programs for dairy cattle.
Resumo:
Down syndrome (DS) or trisomy 21 (T21) is the most common genetic cause of intellectual disability (ID). Subjects with DS are characterized by complex and variable clinical features including intellectual disability (ID) and craniofacial dysmorphisms. The aim of the thesis is to uncover genotype-phenotype relationships in DS possibly useful to devise therapies based on molecular and cellular mechanisms. In this work, we have investigated different aspects of DS: - we have collected clinical data of children with DS and we have evaluated the cognitive impairment through specific cognitive tests - we have analysed genomics of DS through the study of partial trisomy (PT21) cases. We have described new PT21 cases confirming the hypothesis of the highly restricted DS critical region (HR-DSCR) recently identified as the minimal region whose duplication is shared by all PT21 subjects diagnosed with DS, while it is absent in all PT21 non-DS subjects. Moreover, we have characterized new transcripts included in the HR-DSCR; - we have studied gene expression through RNAseq in blood cells of children with DS; -metabolic alterations in plasma of children with DS were identified through different methods: Nuclear Magnetic resonance, routine blood exams performed during the follow up of the subjects and enzyme-linked immunosorbent assay (ELISA); - to test possible correlations between specific Hsa21 regions and alterations in transcriptomics and metabolomics, we have used trisomic iPSCs and differentiated them into neuronal derivatives. Significant alterations in gene expression and metabolic profiles have been identified, as well as significant correlations with clinical and cognitive aspects. Specific genes and the HR-DSCR may play a role in these alterations: cell models need to be developed to investigate this role. Neural derivatives from trisomic iPSCs are a promising model to better understand genotype-phenotype correlations in DS.
Resumo:
This PhD project aimed to (i) investigate the effects of three nutritional strategies (supplementation of a synbiotic, a muramidase, or arginine) on growth performance, gut health, and metabolism of broilers fed without antibiotics under thermoneutral and heat stress conditions and to (ii) explore the impacts of heat stress on hypothalamic regulation of feed intake in three broiler lines from diverse stages of genetic selection and in the red jungle fowl, the ancestor of domestic chickens. Synbiotic improved feed efficiency and footpad health, increased Firmicutes and reduced Bacteroidetes in the ceca of birds kept in thermoneutral conditions, while did not mitigate the impacts of heat stress on growth performance. Under optimal thermal conditions, muramidase increased final body weight and reduced cumulative feed intake and feed conversion ratio in a dose-dependent way. The highest dose reduced the risk of footpad lesions, cecal alpha diversity, the Firmicutes to Bacteroidetes ratio, and butyrate producers, increased Bacteroidaceae and Lactobacillaceae, plasmatic levels of bioenergetic metabolites, and reduced the levels of pro-oxidant metabolites. The same dose, however, failed to reduce the effects of heat stress on growth performance. Arginine supplementation improved growth rate, final body weight, and feed efficiency, increased plasmatic levels of arginine and creatine and hepatic levels of creatine and essential amino acids, reduced alpha diversity, Firmicutes, and Proteobacteria (especially Escherichia coli), and increased Bacteroidetes and Lactobacillus salivarius in the ceca of thermoneutral birds. No arginine-mediated attenuation of heat stress was found. Heat stress altered protein metabolism and caused the accumulation of antioxidant and protective molecules in oxidative stress-sensitive tissues. Arginine supplementation, however, may have partially counterbalanced the effects of heat stress on energy homeostasis. Stable gene expression of (an)orexigenic neuropeptides was found in the four chicken populations studied, but responses to hypoxia and heat stress appeared to be related to feed intake regulation.
Resumo:
The current dominance of African runners in long-distance running is an intriguing phenomenon that highlights the close relationship between genetics and physical performance. Many factors in the interesting interaction between genotype and phenotype (eg, high cardiorespiratory fitness, higher hemoglobin concentration, good metabolic efficiency, muscle fiber composition, enzyme profile, diet, altitude training, and psychological aspects) have been proposed in the attempt to explain the extraordinary success of these runners. Increasing evidence shows that genetics may be a determining factor in physical and athletic performance. But, could this also be true for African long-distance runners? Based on this question, this brief review proposed the role of genetic factors (mitochondrial deoxyribonucleic acid, the Y chromosome, and the angiotensin-converting enzyme and the alpha-actinin-3 genes) in the amazing athletic performance observed in African runners, especially the Kenyans and Ethiopians, despite their environmental constraints.
Resumo:
In this study, 103 unrelated South-American patients with mucopolysaccharidosis type II (MPS II) were investigated aiming at the identification of iduronate-2-sulfatase (IDS) disease causing mutations and the possibility of some insights on the genotype-phenotype correlation The strategy used for genotyping involved the identification of the previously reported inversion/disruption of the IDS gene by PCR and screening for other mutations by PCR/SSCP. The exons with altered mobility on SSCP were sequenced, as well as all the exons of patients with no SSCP alteration. By using this strategy, we were able to find the pathogenic mutation in all patients. Alterations such as inversion/disruption and partial/total deletions of the IDS gene were found in 20/103 (19%) patients. Small insertions/deletions/indels (<22 bp) and point mutations were identified in 83/103 (88%) patients, including 30 novel mutations; except for a higher frequency of small duplications in relation to small deletions, the frequencies of major and minor alterations found in our sample are in accordance with those described in the literature.
Resumo:
There is great interindividual variability in the response to GH therapy. Ascertaining genetic factors can improve the accuracy of growth response predictions. Suppressor of cytokine signaling (SOCS)-2 is an intracellular negative regulator of GH receptor (GHR) signaling. The objective of the study was to assess the influence of a SOCS2 polymorphism (rs3782415) and its interactive effect with GHR exon 3 and -202 A/C IGFBP3 (rs2854744) polymorphisms on adult height of patients treated with recombinant human GH (rhGH). Genotypes were correlated with adult height data of 65 Turner syndrome (TS) and 47 GH deficiency (GHD) patients treated with rhGH, by multiple linear regressions. Generalized multifactor dimensionality reduction was used to evaluate gene-gene interactions. Baseline clinical data were indistinguishable among patients with different genotypes. Adult height SD scores of patients with at least one SOCS2 single-nucleotide polymorphism rs3782415-C were 0.7 higher than those homozygous for the T allele (P < .001). SOCS2 (P = .003), GHR-exon 3 (P= .016) and -202 A/C IGFBP3 (P = .013) polymorphisms, together with clinical factors accounted for 58% of the variability in adult height and 82% of the total height SD score gain. Patients harboring any two negative genotypes in these three different loci (homozygosity for SOCS2 T allele; the GHR exon 3 full-length allele and/or the -202C-IGFBP3 allele) were more likely to achieve an adult height at the lower quartile (odds ratio of 13.3; 95% confidence interval of 3.2-54.2, P = .0001). The SOCS2 polymorphism (rs3782415) has an influence on the adult height of children with TS and GHD after long-term rhGH therapy. Polymorphisms located in GHR, IGFBP3, and SOCS2 loci have an influence on the growth outcomes of TS and GHD patients treated with rhGH. The use of these genetic markers could identify among rhGH-treated patients those who are genetically predisposed to have less favorable outcomes.
Resumo:
Prosopis rubriflora and Prosopis ruscifolia are important species in the Chaquenian regions of Brazil. Because of the restriction and frequency of their physiognomy, they are excellent models for conservation genetics studies. The use of microsatellite markers (Simple Sequence Repeats, SSRs) has become increasingly important in recent years and has proven to be a powerful tool for both ecological and molecular studies. In this study, we present the development and characterization of 10 new markers for P. rubriflora and 13 new markers for P. ruscifolia. The genotyping was performed using 40 P. rubriflora samples and 48 P. ruscifolia samples from the Chaquenian remnants in Brazil. The polymorphism information content (PIC) of the P. rubriflora markers ranged from 0.073 to 0.791, and no null alleles or deviation from Hardy-Weinberg equilibrium (HW) were detected. The PIC values for the P. ruscifolia markers ranged from 0.289 to 0.883, but a departure from HW and null alleles were detected for certain loci; however, this departure may have resulted from anthropic activities, such as the presence of livestock, which is very common in the remnant areas. In this study, we describe novel SSR polymorphic markers that may be helpful in future genetic studies of P. rubriflora and P. ruscifolia.
Resumo:
The biochemical responses of the enzymatic antioxidant system of a drought-tolerant cultivar (IACSP 94-2094) and a commercial cultivar in Brazil (IACSP 95-5000) grown under two levels of soil water restriction (70% and 30% Soil Available Water Content) were investigated. IACSP 94-2094 exhibited one additional active superoxide dismutase (Cu/Zn-SOD VI) isoenzyme in comparison to IACSP 95-5000, possibly contributing to the heightened response of IACSP 94-2094 to the induced stress. The total glutathione reductase (GR) activity increased substantially in IACSP 94-2094 under conditions of severe water stress; however, the appearance of a new GR isoenzyme and the disappearance of another isoenzyme were found not to be related to the stress response because the cultivars from both treatment groups (control and water restrictions) exhibited identical changes. Catalase (CAT) activity seems to have a more direct role in H2O2 detoxification under water stress condition and the shift in isoenzymes in the tolerant cultivar might have contributed to this response, which may be dependent upon the location where the excessive H2O2 is being produced under stress. The improved performance of IACSP 94-2094 under drought stress was associated with a more efficient antioxidant system response, particularly under conditions of mild stress.
Resumo:
Intronic thyroid-stimulating hormone receptor polymorphisms have been associated with the risk for both Graves' disease and Graves' ophthalmopathy, but results have been inconsistent among different populations. We aimed to investigate the influence of thyroid-stimulating hormone receptor intronic polymorphisms in a large well-characterized population of GD patients. We studied 279 Graves' disease patients (231 females and 48 males, 39.80 ± 11.69 years old), including 144 with Graves' ophthalmopathy, matched to 296 healthy control individuals. Thyroid-stimulating hormone receptor genotypes of rs179247 and rs12885526 were determined by Real Time PCR TaqMan(®) SNP Genotyping. A multivariate analysis showed that the inheritance of the thyroid-stimulating hormone receptor AA genotype for rs179247 increased the risk for Graves' disease (OR = 2.821; 95 % CI 1.595-4.990; p = 0.0004), whereas the thyroid-stimulating hormone receptor GG genotype for rs12885526 increased the risk for Graves' ophthalmopathy (OR = 2.940; 95 % CI 1.320-6.548; p = 0.0083). Individuals with Graves' ophthalmopathy also presented lower mean thyrotropin receptor antibodies levels (96.3 ± 143.9 U/L) than individuals without Graves' ophthalmopathy (98.3 ± 201.9 U/L). We did not find any association between the investigated polymorphisms and patients clinical features or outcome. We demonstrate that thyroid-stimulating hormone receptor intronic polymorphisms are associated with the susceptibility to Graves' disease and Graves' ophthalmopathy in the Brazilian population, but do not appear to influence the disease course.
Resumo:
The role of key cell cycle regulation genes such as, CDKN1B, CDKN2A, CDKN2B, and CDKN2C in sporadic medullary thyroid carcinoma (s-MTC) is still largely unknown. In order to evaluate the influence of inherited polymorphisms of these genes on the pathogenesis of s-MTC, we used TaqMan SNP genotyping to examine 45 s-MTC patients carefully matched with 98 controls. A multivariate logistic regression analysis demonstrated that CDKN1B and CDKN2A genes were related to s-MTC susceptibility. The rs2066827*GT+GG CDKN1B genotype was more frequent in s-MTC patients (62.22%) than in controls (40.21%), increasing the susceptibility to s-MTC (OR=2.47; 95% CI=1.048-5.833; P=0.038). By contrast, the rs11515*CG+GG of CDKN2A gene was more frequent in the controls (32.65%) than in patients (15.56%), reducing the risk for s-MTC (OR=0.174; 95% CI=0.048-0.627; P=0.0075). A stepwise regression analysis indicated that two genotypes together could explain 11% of the total s-MTC risk. In addition, a relationship was found between disease progression and the presence of alterations in the CDKN1A (rs1801270), CDKN2C (rs12885), and CDKN2B (rs1063192) genes. WT rs1801270 CDKN1A patients presented extrathyroidal tumor extension more frequently (92%) than polymorphic CDKN1A rs1801270 patients (50%; P=0.0376). Patients with the WT CDKN2C gene (rs12885) presented larger tumors (2.9±1.8 cm) than polymorphic patients (1.5±0.7 cm; P=0.0324). On the other hand, patients with the polymorphic CDKN2B gene (rs1063192) presented distant metastases (36.3%; P=0.0261). In summary, we demonstrated that CDKN1B and CDKN2A genes are associated with susceptibility, whereas the inherited genetic profile of CDKN1A, CDKN2B, and CDKN2C is associated with aggressive features of tumors. This study suggests that profiling cell cycle genes may help define the risk and characterize s-MTC aggressiveness.