857 resultados para GDP Interpolation
Resumo:
Indian fisheries sector in view of its potential contribution to national income, nutritional security, employment opportunities, social objectives and export earnings, plays an important role in the socio-economic development of the country. Fisheries sector contributes 4.3% to the agricultural GDP and export earnings are presently valued at over INR 68 billion from a volume of 460,000 tons. In addition, it provides direct and indirect employment and dependency for over seven million people in the country. With an estimated production potential of 8.4 million tons, the present level of production in the country is 5.9 million tons with almost equal contribution from both marine and inland sectors. The estimated fisheries potential from the Indian exclusive economic zone was found to be 3.9 million tons. But in spite of the increased efforts in fish production, the catch stagnates around 2.9 million tons. The stagnation in catches, mainly due to the over exploitation of dwindling marine resources, forced the government to impart some management measures to regulate the fishery and for the sustenance of the marine resources. The monsoon trawl ban in fisheries was one of the major reforms, which had created a substantial increase in fish production in the past few years. The ban on trawling during monsoon season was introduced in Maharashtra, after a series of studies, from 1992 for a period of 65 days from 10 June to 15 August or Naralipoornima, whichever is earlier. A notable increase in production from the marine sector of the country occurred in the post-ban period. Nevertheless, it had created problems in employment, poverty and income distribution of fishermen during the ban period and was always a matter of unrest between mechanized and traditional sectors of fishing. The aim of this study was to understand the impact of the ban on monsoon trawling in employment pattern, poverty and income distribution of fishermen along the coast of Maharashtra. The study was conducted at the Versova fishing village, Mumbai, and provides reflections on the possible impact of monsoon ban in the livelihood and standard of living of the fishermen in the state.
Resumo:
Fisheries sector contributes about 5.3% to GDP and about 6% of the export earnings of Bangladesh. There are about 4.1 million ha of inland water bodies in Bangladesh. However, over last two decades the catch from inland capture fishery has decreased due to filling of wet lands and other anthropogenic reasons. Accordingly, the production of inland fish has decreased not only for the decrease of water bodies but also due to irrational catch of fish fries, brood fishes and use of current nets for fishing. Significant responses from the fisheries entrepreneurs have not been received for the small loan scheme of the Bangladesh Bank. The bank could not disburse more than Tk. 500 million under the scheme. The total revolving credit under the scheme was Tk. 1,000 million with the assistance from the World Bank. The business houses having fixed assets of value not more than Tk. 10 million will be eligible to borrow from this fund. About Tk. 0.2-5.0 million can be borrowed as term loan and working capital from Bangladesh Bank through commercial banks. The loan was given to the commercial banks at 5% interest (bank rate) and the commercial banks shall also bridge finance to the entrepreneurs at a lower rate of interest. Working capital time limit is for a maximum of 1 year with half yearly rest, mid-term loan maximum of 3 years in 5 installments and with 6 months grace period and long-term loan maximum of 5 years in 9 installments with 6 months grace period.
Resumo:
Zoea 2(Z SUB-2 ) Mysis 1 (M SUB-1 ) and Postlarva 1 (P SUB-1 ) of P. monodon artificially spawned in closed-system concrete hatchery tanks were bioassayed for their tolerance to the antibiotic furanace. The setup consisted of four 20-liter capacity plastic basins previously conditioned for 15 days with freshwater in full sunlight. During the experiment, each basin was filled with 5 liters of seawater to which was added filtered Chaetoceros and Brachionus to give densities of 5 . 0-7 . 5 x 10 SUP-4 cells/ml and 10-20 individuals/ml, respectively. The following are the properties of the water used throughout the experiments: salinity, 26-32%; pH, 7 . 3-8 . 4; temperature, 25-30 degree C; dissolved oxygen, 4 . 5-8 . 4 ppm; nitrite, 0 . 36-0 . 99 ppm; and ammonia, 0 . 10-0 . 30 ppm. To each basin were added 50 healthy larvae of specific stages of P. monodon. After an initial acclimation of one hour in the medium, preweighed amounts of the antibiotic were added and thoroughly dissolved. The concentrations tested were 1 . 0, 2 . 0 and 3 . 0 ppm. One basin always served as control. After 24 hours of exposure, the surviving population in each basin was counted. The survivors were then examined thoroughly under the microscope for unusual behavior and morphological defects brought about by the exposure. To minimize wide variations in the medium as a result of feeding and other manipulations, the systems were all prepared at 9:00 a.m. each time, and the feeds on two instances, one at 5:00 p.m. and another at 5:00 a.m. Fifteen trials conducted with Z SUB-2 showed survival ranges of 68% to 98% with a mean of 77 . 6% in the controls; 32% to 94% with a mean of 65 . 7% at 1 ppm, and 0% to 56% with a mean of 36 . 5% at 2 ppm. There were no survivors at 3 ppm. Interpolation from the survival-dose curve gave a 24-hr LC SUB-50 of approximately 1 . 6 ppm.
Resumo:
Copper is used to deter the growth of bacterial, fungal and protozoan disease organism in fishes. Zoeae (Z SUB-1 ), myses (M SUB-1 ) and postlarvae (P SUB-1 ) were exposed to copper sulfate at concentrations of 0 . 025, 0 . 05, 0 . 75, 0 . 1 and 0 . 2 ppm from 24 to 96 hours. The number of surviving larvae were counted at the end of each 24-hour period and the percentage of survival is determined for each dose level. The LC SUB-50 for each of the larval stages was interpolated from the data whenever possible. Three trials with 2 replicates per trial were conducted. The physico-chemical characteristics of the bath taken before and at the end of the experimental period show insignificant differences between initial and final values in each trial. Results indicate that mortality rates of all larval stages increased with exposure time and that mortality rates of the experimental group is higher than the control. Interpolation of the LC SUB-50 is possible only for the 48-h and 72-h exposure times for both zoeae and myses and for the 48-h exposure time for the postlarvae. This is due to the high survival percentage of the 24-h group and the low survival percentage (below 50%) of the larvae exposed for 96 hours. The 48-hour LC SUB-50 for Z SUB-1 , M SUB-1 and P SUB-1 are 0 . 225, 0 . 350 and 0 . 125 ppm respectively. Postlarvae seem to be more sensitive than either of the 2 larval stages having a lower 48-h LC SUB-50 and a low survival rate after 72 hours. The larvae were observed to lose their balance and were lethargic, producing few swimming movements so that they were mostly confined to the bottom of the aquaria. Moribund larvae observed under the microscope had a faster but weak heartbeat compared to healthy larvae. Slight or complete loss of feeding ability indicated by empty guts and delayed molting of Z SUB-1 to Z SUB-2 were also noted.
Resumo:
The subiculum, which is the primary target of CA1 pyramidal neurons and sending efferent fibres to many brain regions, serves as a hippocampal interface in the neural information processes between hippocampal formation and neocortex. Long-term depression (LTD) is extensively studied in the hippocampus, but not at the CA1-subicular synaptic transmission. Using whole-cell EPSC recordings in the brain slices of young rats, we demonstrated that the pairing protocols of low frequency stimulation (LFS) at 3 Hz and postsynaptic depolarization of -50 mVelicited a reliable LTD in the subiculum. The LTD did not cause the changes of the paired-pulse ratio of EPSC. Furthermore, it did not depend on either NMDA receptors or voltage-gated calcium channels (VGCCs). Bath application of the G-protein coupled muscarinic acetylcholine receptors (mAChRs) antagonists, atropine or scopolamine, blocked the LTD, suggesting that mAChRs are involved in the LTD. It was also completely blocked by either the Ca2+ chelator BAPTA or the G-protein inhibitor GDP-beta-S in the intracellular solution. This type of LTD in the subiculum may play a particular role in the neural information processing between the hippocampus and neocortex. (c) 2005 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Resumo:
The fisheries sector in Cambodia contributes 8%–12% to national GDP and 25% - 30% to agricultural GDP, with an estimated 4.5 million people involved in fishing and associated trades. Fish and other aquatic animals are important food sources, contributing an estimated national average of 60% - 70% of total animal protein intake. Of the 2013 total fish production, 550,000 metric tons were harvested from freshwater habitats, of which rice field fisheries and small-scale family fisheries contributed approximately 20%. The productivity and value of rice field fisheries to households in rural Cambodia has been highlighted in a number of previous studies. The Fisheries Administration of the Ministry of Agriculture, Forestry and Fisheries plans to increase productivity from rice field fisheries and aquaculture at an annual rate of 15% to maintain supply for a growing population. This report draws mainly on the baseline and monitoring data from the Rice Field Fisheries Enhancement Project (RFFEP) during its implementation between 2012 and 2014. Reference is also made to the Fish on Farms project to highlight the relative contribution of fish from small-scale aquaculture compared to wild-caught fish.
Resumo:
An increasingly common scenario in building speech synthesis and recognition systems is training on inhomogeneous data. This paper proposes a new framework for estimating hidden Markov models on data containing both multiple speakers and multiple languages. The proposed framework, speaker and language factorization, attempts to factorize speaker-/language-specific characteristics in the data and then model them using separate transforms. Language-specific factors in the data are represented by transforms based on cluster mean interpolation with cluster-dependent decision trees. Acoustic variations caused by speaker characteristics are handled by transforms based on constrained maximum-likelihood linear regression. Experimental results on statistical parametric speech synthesis show that the proposed framework enables data from multiple speakers in different languages to be used to: train a synthesis system; synthesize speech in a language using speaker characteristics estimated in a different language; and adapt to a new language. © 2012 IEEE.
Resumo:
This paper presents the modeling of second generation (2 G) high-temperature superconducting (HTS) pancake coils using finite element method. The axial symmetric model can be used to calculate current and magnetic field distribution inside the coil. The anisotropic characteristics of 2 G tapes are included in the model by direct interpolation. The model is validated by comparing to experimental results. We use the model to study critical currents of 2 G coils and find that 100μV/m is too high a criterion to determine long-term operating current of the coils, because the innermost turns of a coil will, due to the effect of local magnetic field, reach their critical current much earlier than outer turns. Our modeling shows that an average voltage criterion of 20μV/m over the coil corresponds to the point at which the innermost turns' electric field exceeds 100μV/m. So 20μV/m is suggested to be the critical current criterion of the HTS coil. The influence of background field on the coil critical current is also studied in the paper. © 2012 American Institute of Physics.
Resumo:
POMDP algorithms have made significant progress in recent years by allowing practitioners to find good solutions to increasingly large problems. Most approaches (including point-based and policy iteration techniques) operate by refining a lower bound of the optimal value function. Several approaches (e.g., HSVI2, SARSOP, grid-based approaches and online forward search) also refine an upper bound. However, approximating the optimal value function by an upper bound is computationally expensive and therefore tightness is often sacrificed to improve efficiency (e.g., sawtooth approximation). In this paper, we describe a new approach to efficiently compute tighter bounds by i) conducting a prioritized breadth first search over the reachable beliefs, ii) propagating upper bound improvements with an augmented POMDP and iii) using exact linear programming (instead of the sawtooth approximation) for upper bound interpolation. As a result, we can represent the bounds more compactly and significantly reduce the gap between upper and lower bounds on several benchmark problems. Copyright © 2011, Association for the Advancement of Artificial Intelligence. All rights reserved.
Resumo:
Surface temperature measurements from two discs of a gas turbine compressor rig are used as boundary conditions for the transient conduction solution (inverse heat transfer analysis). The disc geometry is complex, and so the finite element method is used. There are often large radial temperature gradients on the discs, and the equations are therefore solved taking into account the dependence of thermal conductivity on temperature. The solution technique also makes use of a multigrid algorithm to reduce the solution time. This is particularly important since a large amount of data must be analyzed to obtain correlations of the heat transfer. The finite element grid is also used for a network analysis to calculate the radiant heat transfer in the cavity formed between the two compressor discs. The work discussed here proved particularly challenging as the disc temperatures were only measured at four different radial locations. Four methods of surface temperature interpolation are examined, together with their effect on the local heat fluxes. It is found that the choice of interpolation method depends on the available number of data points. Bessel interpolation gives the best results for four data points, whereas cubic splines are preferred when there are considerably more data points. The results from the analysis of the compressor rig data show that the heat transfer near the disc inner radius appears to be influenced by the central throughflow. However, for larger radii, the heat transfer from the discs and peripheral shroud is found to be consistent with that of a buoyancy-induced flow.
Resumo:
We offer a solution to the problem of efficiently translating algorithms between different types of discrete statistical model. We investigate the expressive power of three classes of model-those with binary variables, with pairwise factors, and with planar topology-as well as their four intersections. We formalize a notion of "simple reduction" for the problem of inferring marginal probabilities and consider whether it is possible to "simply reduce" marginal inference from general discrete factor graphs to factor graphs in each of these seven subclasses. We characterize the reducibility of each class, showing in particular that the class of binary pairwise factor graphs is able to simply reduce only positive models. We also exhibit a continuous "spectral reduction" based on polynomial interpolation, which overcomes this limitation. Experiments assess the performance of standard approximate inference algorithms on the outputs of our reductions.
Resumo:
The details of the Element Free Galerkin (EFG) method are presented with the method being applied to a study on hydraulic fracturing initiation and propagation process in a saturated porous medium using coupled hydro-mechanical numerical modelling. In this EFG method, interpolation (approximation) is based on nodes without using elements and hence an arbitrary discrete fracture path can be modelled.The numerical approach is based upon solving two governing partial differential equations of equilibrium and continuity of pore water simultaneously. Displacement increment and pore water pressure increment are discretized using the same EFG shape functions. An incremental constrained Galerkin weak form is used to create the discrete system of equations and a fully implicit scheme is used for discretization in the time domain. Implementation of essential boundary conditions is based on the penalty method. In order to model discrete fractures, the so-called diffraction method is used.Examples are presented and the results are compared to some closed-form solutions and FEM approximations in order to demonstrate the validity of the developed model and its capabilities. The model is able to take the anisotropy and inhomogeneity of the material into account. The applicability of the model is examined by simulating hydraulic fracture initiation and propagation process from a borehole by injection of fluid. The maximum tensile strength criterion and Mohr-Coulomb shear criterion are used for modelling tensile and shear fracture, respectively. The model successfully simulates the leak-off of fluid from the fracture into the surrounding material. The results indicate the importance of pore fluid pressure in the initiation and propagation pattern of fracture in saturated soils. © 2013 Elsevier Ltd.
Resumo:
Statistical analysis of diffusion tensor imaging (DTI) data requires a computational framework that is both numerically tractable (to account for the high dimensional nature of the data) and geometric (to account for the nonlinear nature of diffusion tensors). Building upon earlier studies exploiting a Riemannian framework to address these challenges, the present paper proposes a novel metric and an accompanying computational framework for DTI data processing. The proposed approach grounds the signal processing operations in interpolating curves. Well-chosen interpolating curves are shown to provide a computational framework that is at the same time tractable and information relevant for DTI processing. In addition, and in contrast to earlier methods, it provides an interpolation method which preserves anisotropy, a central information carried by diffusion tensor data. © 2013 Springer Science+Business Media New York.
Resumo:
The exact calculation of mode quality factor Q is a key problem in the design of high-Q photonic crystal nanocavity. On the basis of further investigation on conventional Pade approximation, FDM and DFT, Pade approximation with Baker's algorithm is enhanced through introducing multiple frequency search and parabola interpolation. Though Pade approximation is a nonlinear signal processing method and only short time sequence is needed, we find the different length of sequence requirements for 2D and 3D FDTD, which is very important to obtain convergent and accurate results. By using the modified Pade approximation method and 3D FDTD, the 2D slab photonic crystal nanocavity is analyzed and high-Q multimode can be solved quickly instead of large range high-resolution scanning. Monitor position has also been investigated. These results are very helpful to the design of photonic crystal nanocavity devices. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this paper, an n-type Si1-xGex/Ge (x >= 0.85) quantum cascade (QC) structure utilizing a deep Ge quantum well for electrons at the Gamma point is proposed. Based on linear interpolation, a conduction band offset at the Gamma point in a Si1-xGex/Ge ( x >= 0.85) heterostructure is presented, which is suitable for designing a QC laser. This approach has the advantages of a large conduction band offset at the Gamma point, a low lattice mismatch between the Si1-xGex/Ge ( x >= 0.85) active layers and the Si1-yGey ( y > x) virtual substrate, a small electron effective mass in the Gamma band, simple conduction energy band structures and a simple phonon scattering mechanism in the Ge quantum well. The theory predicts that if high-energy electrons are continuously injected into the Gamma band, a quasi-equilibrium distribution of electrons between the Gamma and L bands can be reached and held, i.e., electrons with a certain density will be kept in the Gamma band. This result is supported by the intervalley scattering experiments. In n-type Si1-xGex/Ge ( x >= 0.85) QC structures, population inversion between the laser's upper and lower levels is demonstrated.