459 resultados para GASOLINA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Autopista de la información es el nombre largo e inadecuado por el que ya se conoce popularmente a la que aquí llamamos inforpista. Lo que quiera que sea o acabe siendo la inforpista, si hay por lo menos una cosa cierta es que representa el advenimiento de un universo de actividades desmaterializadas: la gasolina y los materiales desplazados por el espacio físico se sustituyen por la electricidad y la información instantánea a través de un ciberespacio sin distancias. Decir "autopista de la información" es casi como negar simbólicamente el tránsito a este espacio electrónico inmaterial. En muchos sitios ya se dice y escribe "infobahn", nueva voz alemana, adoptada por los anglosajones, que se contrapone precisamente a "autobahn" (autopista). Pero nosotros seguimos siendo un tanto paletos, además de poco prácticos, puesto que preferimos denotar una cosa ele una forma errónea, y encima empleando cuatro palabras, que ocupan 27 espacios de escritura, en lugar de hacerlo con una sola, de diez caracteres.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Los procesos relacionados con el almacenamiento y manipulación de productos petrolíferos, conllevan siempre determinados riesgos de incendio que dependen básicamente de las propiedades físicas y químicas de los productos, y hacen indispensable la adopción de importantes medidas de seguridad contra incendios. Esto es debido a que las consecuencias previsibles en caso de la producción y expansión del incendio son tan graves que aconsejan la instalación de medios más potentes de lucha contra incendios, que los simples extintores manuales. En base a ello, el presente proyecto pretende definir y desarrollar una propuesta de diseño del sistema de protección contra incendios en la zona de almacenamiento de una planta de almacenamiento de líquidos petrolíferos. La planta almacena Gasóleo, Gasolina y Queroseno de Aviación en ocho tanques atmosféricos de techo fijo situados en un único cubeto de retención. Se desarrolla un extenso estudio de los requisitos normativos para este tipo de casos, y en consecuencia, se calcula y clasifica el nivel de riesgo intrínseco de incendio en la zona estudiada, a partir de su carga de fuego ponderada y corregida. Además, se muestra la distribución de los tanques en el cubeto, basada en el cálculo de las distancias de seguridad entre cada uno de ellos y con el exterior. A partir de ello, el proyecto se centra en el cálculo de los valores de descarga de agua de refrigeración, requeridos en las boquillas de agua pulverizada e hidrantes exteriores de alrededor de la zona de riesgo; de espuma física para hidrocarburos, en las cámaras de espuma de la parte superior de la envolvente de los tanques, y en los monitores auxiliares de descarga de espuma, de la zona del cubeto de retención. Los objetivos, métodos y bases de cálculo se recogen en la memoria del proyecto. Además se incluye, la planificación temporal con MS Project, de la implementación del proyecto; la elección de los equipos que componen los sistemas, el presupuesto asociado y los planos de distribución de la planta y del flujo de tuberías propuesto. ABSTRACT Fire protection units and equipment are necessary on processes and operations related to storage and handling of petroleum products, because of their flammable and combustible properties. In case a hazard of fire from petroleum products is materialized, huge consequences are to be expected. To reduce losses, facilities should be equipped with appropriate protection. Based on that, this project seeks to define and develop the fire protection system design for a petroleum liquids storage installation. The plant stores Gasoil, Gasoline, and aviation Kerosene in eight fixed roof atmospheric tanks. A complete study of the fire protection regulations is carried out and, as a result, the studied area’s risk level is determined from its fire load density. The calculation of the minimum shell-to-shell spacing of adjacent aboveground storage tanks and external equipment, is also determined for a correct distribution of tanks in the bunded area. Assuming that, the design includes calculations of required discharge of water for spray nozzles and hydrants, and required discharge of foam from foam chambers and foam monitors. Objectives, methodology and calculation basis are presented on the project technical report; which also includes project scheduling with MS. Project software, the selection of system components and equipment, related budget and lay out of installation and piping.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este proyecto se va desarrollar una aplicación distribuida para la diagnosis y monitorización de automóviles. Se pretende poder realizar estas funciones en prácticamente cualquier automóvil del mercado (con fabricación a partir del año 1996 para el caso de automóviles gasolina y para el año 2000 en el caso de automóviles diésel) de manera remota, aprovechando la conectividad a Internet que actualmente brindan la mayoría de los smartphones. La viabilidad del proyecto reside en la existencia de estándares para la diagnosis de la electrónica del motor. Para poder llevar a cabo esta tarea, se empleará una interfaz de diagnóstico ELM327 bluetooth, que servirá de enlace entre el vehículo y el teléfono móvil del usuario y que a su vez se encargara de enviar los datos que reciba del vehículo a un terminal remoto. De esta manera, se tendrá la aplicación dividida en dos partes: por un lado la aplicación que se ejecuta en el terminal móvil del usuario que actuará como parte servidora, y por el otro la aplicación cliente que se ejecutará en un terminal remoto. También estará disponible una versión de la aplicación servidora para PC. El potencial del proyecto reside en la capacidad de visualización en tiempo real de los parámetros más importantes del motor del vehículo y en la detección de averías gracias a la funcionalidad de lectura de la memoria de averías residente en el vehículo. Así mismo, otras funcionalidades podrían ser implementadas en posteriores versiones de la aplicación, como podría ser el registro de dichos parámetros en una base de datos para su posterior procesado estadístico; de este modo se podría saber el consumo medio, la velocidad media, velocidad máxima alcanzada, tiempo de uso, kilometraje diario o mensual… y un sin fin de posibilidades. ABSTRACT. In this project a distributed application for car monitor and diagnostic is going to be developed. The idea is to be able to connect remotely to almost any car (with production starting in 1996 in the case of petrol engines and production starting in 2000 in case of diesel engines) using the Internet connection available in almost every smartphone. The project is viable because of the existence of standards for engine electronic unit connection. In order to do that, an ELM327 bluetooth interface is going to be used. This interface works as a link between the car and the smartphone, and it is the smartphone which sends the received data from the car to a remote terminal (computer). Thus, the application is divided into two parts: the server which is running on smartphone and the client which is running on a remote terminal. Also there is available a server application for PC. The potential of the project lies in the real-time display data capacity of the most important engine parameters and in the diagnostic capacity based on reading fault memory. In addition, other features could be implemented in later versions of the application, as the capacity of record data for future statistic analysis. By doing this, it is possible to know the average fuel consumption, average speed, maximum speed, time of use, daily or monthly mileage… and an endless number of possibilities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El 10 de octubre de 2008 la Organización Marítima Internacional (OMI) firmó una modificación al Anexo VI del convenio MARPOL 73/78, por la que estableció una reducción progresiva de las emisiones de óxidos de azufre (SOx) procedentes de los buques, una reducción adicional de las emisiones de óxidos de nitrógeno (NOx), así como límites en las emisiones de dióxido de Carbono (CO2) procedentes de los motores marinos y causantes de problemas medioambientales como la lluvia ácida y efecto invernadero. Centrándonos en los límites sobre las emisiones de azufre, a partir del 1 de enero de 2015 esta normativa obliga a todos los buques que naveguen por zonas controladas, llamadas Emission Control Area (ECA), a consumir combustibles con un contenido de azufre menor al 0,1%. A partir del 1 de enero del año 2020, o bien del año 2025, si la OMI decide retrasar su inicio, los buques deberán consumir combustibles con un contenido de azufre menor al 0,5%. De igual forma que antes, el contenido deberá ser rebajado al 0,1%S, si navegan por el interior de zonas ECA. Por su parte, la Unión Europea ha ido más allá que la OMI, adelantando al año 2020 la aplicación de los límites más estrictos de la ley MARPOL sobre las aguas de su zona económica exclusiva. Para ello, el 21 de noviembre de 2013 firmó la Directiva 2012 / 33 / EU como adenda a la Directiva de 1999. Tengamos presente que la finalidad de estas nuevas leyes es la mejora de la salud pública y el medioambiente, produciendo beneficios sociales, en forma de reducción de enfermedades, sobre todo de tipo respiratorio, a la vez que se reduce la lluvia ácida y sus nefastas consecuencias. La primera pregunta que surge es ¿cuál es el combustible actual de los buques y cuál será el que tengan que consumir para cumplir con esta Regulación? Pues bien, los grandes buques de navegación internacional consumen hoy en día fuel oil con un nivel de azufre de 3,5%. ¿Existen fueles con un nivel de azufre de 0,5%S? Como hemos concluido en el capítulo 4, para las empresas petroleras, la producción de fuel oil como combustible marino es tratada como un subproducto en su cesta de productos refinados por cada barril de Brent, ya que la demanda de fuel respecto a otros productos está bajando y además, el margen de beneficio que obtienen por la venta de otros productos petrolíferos es mayor que con el fuel. Así, podemos decir que las empresas petroleras no están interesadas en invertir en sus refinerías para producir estos fueles con menor contenido de azufre. Es más, en el caso de que alguna compañía decidiese invertir en producir un fuel de 0,5%S, su precio debería ser muy similar al del gasóleo para poder recuperar las inversiones empleadas. Por lo tanto, el único combustible que actualmente cumple con los nuevos niveles impuestos por la OMI es el gasóleo, con un precio que durante el año 2014 estuvo a una media de 307 USD/ton más alto que el actual fuel oil. Este mayor precio de compra de combustible impactará directamente sobre el coste del trasporte marítimo. La entrada en vigor de las anteriores normativas está suponiendo un reto para todo el sector marítimo. Ante esta realidad, se plantean diferentes alternativas con diferentes implicaciones técnicas, operativas y financieras. En la actualidad, son tres las alternativas con mayor aceptación en el sector. La primera alternativa consiste en “no hacer nada” y simplemente cambiar el tipo de combustible de los grandes buques de fuel oil a gasóleo. Las segunda alternativa es la instalación de un equipo scrubber, que permitiría continuar con el consumo de fuel oil, limpiando sus gases de combustión antes de salir a la atmósfera. Y, por último, la tercera alternativa consiste en el uso de Gas Natural Licuado (GNL) como combustible, con un precio inferior al del gasóleo. Sin embargo, aún existen importantes incertidumbres sobre la evolución futura de precios, operación y mantenimiento de las nuevas tecnologías, inversiones necesarias, disponibilidad de infraestructura portuaria e incluso el desarrollo futuro de la propia normativa internacional. Estas dudas hacen que ninguna de estas tres alternativas sea unánime en el sector. En esta tesis, tras exponer en el capítulo 3 la regulación aplicable al sector, hemos investigado sus consecuencias. Para ello, hemos examinado en el capítulo 4 si existen en la actualidad combustibles marinos que cumplan con los nuevos límites de azufre o en su defecto, cuál sería el precio de los nuevos combustibles. Partimos en el capítulo 5 de la hipótesis de que todos los buques cambian su consumo de fuel oil a gasóleo para cumplir con dicha normativa, calculamos el incremento de demanda de gasóleo que se produciría y analizamos las consecuencias que este hecho tendría sobre la producción de gasóleos en el Mediterráneo. Adicionalmente, calculamos el impacto económico que dicho incremento de coste producirá sobre sector exterior de España. Para ello, empleamos como base de datos el sistema de control de tráfico marítimo Authomatic Identification System (AIS) para luego analizar los datos de todos los buques que han hecho escala en algún puerto español, para así calcular el extra coste anual por el consumo de gasóleo que sufrirá el transporte marítimo para mover todas las importaciones y exportaciones de España. Por último, en el capítulo 6, examinamos y comparamos las otras dos alternativas al consumo de gasóleo -scrubbers y propulsión con GNL como combustible- y, finalmente, analizamos en el capítulo 7, la viabilidad de las inversiones en estas dos tecnologías para cumplir con la regulación. En el capítulo 5 explicamos los numerosos métodos que existen para calcular la demanda de combustible de un buque. La metodología seguida para su cálculo será del tipo bottom-up, que está basada en la agregación de la actividad y las características de cada tipo de buque. El resultado está basado en la potencia instalada de cada buque, porcentaje de carga del motor y su consumo específico. Para ello, analizamos el número de buques que navegan por el Mediterráneo a lo largo de un año mediante el sistema AIS, realizando “fotos” del tráfico marítimo en el Mediterráneo y reportando todos los buques en navegación en días aleatorios a lo largo de todo el año 2014. Por último, y con los datos anteriores, calculamos la demanda potencial de gasóleo en el Mediterráneo. Si no se hace nada y los buques comienzan a consumir gasóleo como combustible principal, en vez del actual fuel oil para cumplir con la regulación, la demanda de gasoil en el Mediterráneo aumentará en 12,12 MTA (Millones de Toneladas Anuales) a partir del año 2020. Esto supone alrededor de 3.720 millones de dólares anuales por el incremento del gasto de combustible tomando como referencia el precio medio de los combustibles marinos durante el año 2014. El anterior incremento de demanda en el Mediterráneo supondría el 43% del total de la demanda de gasóleos en España en el año 2013, incluyendo gasóleos de automoción, biodiesel y gasóleos marinos y el 3,2% del consumo europeo de destilados medios durante el año 2014. ¿Podrá la oferta del mercado europeo asumir este incremento de demanda de gasóleos? Europa siempre ha sido excedentaria en gasolina y deficitaria en destilados medios. En el año 2009, Europa tuvo que importar 4,8 MTA de Norte América y 22,1 MTA de Asia. Por lo que, este aumento de demanda sobre la ya limitada capacidad de refino de destilados medios en Europa incrementará las importaciones y producirá también aumentos en los precios, sobre todo del mercado del gasóleo. El sector sobre el que más impactará el incremento de demanda de gasóleo será el de los cruceros que navegan por el Mediterráneo, pues consumirán un 30,4% de la demanda de combustible de toda flota mundial de cruceros, lo que supone un aumento en su gasto de combustible de 386 millones de USD anuales. En el caso de los RoRos, consumirían un 23,6% de la demanda de la flota mundial de este tipo de buque, con un aumento anual de 171 millones de USD sobre su gasto de combustible anterior. El mayor incremento de coste lo sufrirán los portacontenedores, con 1.168 millones de USD anuales sobre su gasto actual. Sin embargo, su consumo en el Mediterráneo representa sólo el 5,3% del consumo mundial de combustible de este tipo de buques. Estos números plantean la incertidumbre de si semejante aumento de gasto en buques RoRo hará que el transporte marítimo de corta distancia en general pierda competitividad sobre otros medios de transporte alternativos en determinadas rutas. De manera que, parte del volumen de mercancías que actualmente transportan los buques se podría trasladar a la carretera, con los inconvenientes medioambientales y operativos, que esto produciría. En el caso particular de España, el extra coste por el consumo de gasóleo de todos los buques con escala en algún puerto español en el año 2013 se cifra en 1.717 millones de EUR anuales, según demostramos en la última parte del capítulo 5. Para realizar este cálculo hemos analizado con el sistema AIS a todos los buques que han tenido escala en algún puerto español y los hemos clasificado por distancia navegada, tipo de buque y potencia. Este encarecimiento del transporte marítimo será trasladado al sector exterior español, lo cual producirá un aumento del coste de las importaciones y exportaciones por mar en un país muy expuesto, pues el 75,61% del total de las importaciones y el 53,64% del total de las exportaciones se han hecho por vía marítima. Las tres industrias que se verán más afectadas son aquellas cuyo valor de mercancía es inferior respecto a su coste de transporte. Para ellas los aumentos del coste sobre el total del valor de cada mercancía serán de un 2,94% para la madera y corcho, un 2,14% para los productos minerales y un 1,93% para las manufacturas de piedra, cemento, cerámica y vidrio. Las mercancías que entren o salgan por los dos archipiélagos españoles de Canarias y Baleares serán las que se verán más impactadas por el extra coste del transporte marítimo, ya que son los puertos más alejados de otros puertos principales y, por tanto, con más distancia de navegación. Sin embargo, esta no es la única alternativa al cumplimiento de la nueva regulación. De la lectura del capítulo 6 concluimos que las tecnologías de equipos scrubbers y de propulsión con GNL permitirán al buque consumir combustibles más baratos al gasoil, a cambio de una inversión en estas tecnologías. ¿Serán los ahorros producidos por estas nuevas tecnologías suficientes para justificar su inversión? Para contestar la anterior pregunta, en el capítulo 7 hemos comparado las tres alternativas y hemos calculado tanto los costes de inversión como los gastos operativos correspondientes a equipos scrubbers o propulsión con GNL para una selección de 53 categorías de buques. La inversión en equipos scrubbers es más conveniente para buques grandes, con navegación no regular. Sin embargo, para buques de tamaño menor y navegación regular por puertos con buena infraestructura de suministro de GNL, la inversión en una propulsión con GNL como combustible será la más adecuada. En el caso de un tiempo de navegación del 100% dentro de zonas ECA y bajo el escenario de precios visto durante el año 2014, los proyectos con mejor plazo de recuperación de la inversión en equipos scrubbers son para los cruceros de gran tamaño (100.000 tons. GT), para los que se recupera la inversión en 0,62 años, los grandes portacontenedores de más de 8.000 TEUs con 0,64 años de recuperación y entre 5.000-8.000 TEUs con 0,71 años de recuperación y, por último, los grandes petroleros de más de 200.000 tons. de peso muerto donde tenemos un plazo de recuperación de 0,82 años. La inversión en scrubbers para buques pequeños, por el contrario, tarda más tiempo en recuperarse llegando a más de 5 años en petroleros y quimiqueros de menos de 5.000 toneladas de peso muerto. En el caso de una posible inversión en propulsión con GNL, las categorías de buques donde la inversión en GNL es más favorable y recuperable en menor tiempo son las más pequeñas, como ferris, cruceros o RoRos. Tomamos ahora el caso particular de un buque de productos limpios de 38.500 toneladas de peso muerto ya construido y nos planteamos la viabilidad de la inversión en la instalación de un equipo scrubber o bien, el cambio a una propulsión por GNL a partir del año 2015. Se comprueba que las dos variables que más impactan sobre la conveniencia de la inversión son el tiempo de navegación del buque dentro de zonas de emisiones controladas (ECA) y el escenario futuro de precios del MGO, HSFO y GNL. Para realizar este análisis hemos estudiado cada inversión, calculando una batería de condiciones de mérito como el payback, TIR, VAN y la evolución de la tesorería del inversor. Posteriormente, hemos calculado las condiciones de contorno mínimas de este buque en concreto para asegurar una inversión no sólo aceptable, sino además conveniente para el naviero inversor. En el entorno de precios del 2014 -con un diferencial entre fuel y gasóleo de 264,35 USD/ton- si el buque pasa más de un 56% de su tiempo de navegación en zonas ECA, conseguirá una rentabilidad de la inversión para inversores (TIR) en el equipo scrubber que será igual o superior al 9,6%, valor tomado como coste de oportunidad. Para el caso de inversión en GNL, en el entorno de precios del año 2014 -con un diferencial entre GNL y gasóleo de 353,8 USD/ton FOE- si el buque pasa más de un 64,8 % de su tiempo de navegación en zonas ECA, conseguirá una rentabilidad de la inversión para inversores (TIR) que será igual o superior al 9,6%, valor del coste de oportunidad. Para un tiempo en zona ECA estimado de un 60%, la rentabilidad de la inversión (TIR) en scrubbers para los inversores será igual o superior al 9,6%, el coste de oportunidad requerido por el inversor, para valores del diferencial de precio entre los dos combustibles alternativos, gasóleo (MGO) y fuel oil (HSFO) a partir de 244,73 USD/ton. En el caso de una inversión en propulsión GNL se requeriría un diferencial de precio entre MGO y GNL de 382,3 USD/ton FOE o superior. Así, para un buque de productos limpios de 38.500 DWT, la inversión en una reconversión para instalar un equipo scrubber es más conveniente que la de GNL, pues alcanza rentabilidades de la inversión (TIR) para inversores del 12,77%, frente a un 6,81% en el caso de invertir en GNL. Para ambos cálculos se ha tomado un buque que navegue un 60% de su tiempo por zona ECA y un escenario de precios medios del año 2014 para el combustible. Po otro lado, las inversiones en estas tecnologías a partir del año 2025 para nuevas construcciones son en ambos casos convenientes. El naviero deberá prestar especial atención aquí a las características propias de su buque y tipo de navegación, así como a la infraestructura de suministros y vertidos en los puertos donde vaya a operar usualmente. Si bien, no se ha estudiado en profundidad en esta tesis, no olvidemos que el sector marítimo debe cumplir además con las otras dos limitaciones que la regulación de la OMI establece sobre las emisiones de óxidos de Nitrógeno (NOx) y Carbono (CO2) y que sin duda, requerirán adicionales inversiones en diversos equipos. De manera que, si bien las consecuencias del consumo de gasóleo como alternativa al cumplimiento de la Regulación MARPOL son ciertamente preocupantes, existen alternativas al uso del gasóleo, con un aumento sobre el coste del transporte marítimo menor y manteniendo los beneficios sociales que pretende dicha ley. En efecto, como hemos demostrado, las opciones que se plantean como más rentables desde el punto de vista financiero son el consumo de GNL en los buques pequeños y de línea regular (cruceros, ferries, RoRos), y la instalación de scrubbers para el resto de buques de grandes dimensiones. Pero, por desgracia, estas inversiones no llegan a hacerse realidad por el elevado grado de incertidumbre asociado a estos dos mercados, que aumenta el riesgo empresarial, tanto de navieros como de suministradores de estas nuevas tecnologías. Observamos así una gran reticencia del sector privado a decidirse por estas dos alternativas. Este elevado nivel de riesgo sólo puede reducirse fomentando el esfuerzo conjunto del sector público y privado para superar estas barreras de entrada del mercado de scrubbers y GNL, que lograrían reducir las externalidades medioambientales de las emisiones sin restar competitividad al transporte marítimo. Creemos así, que los mismos organismos que aprobaron dicha ley deben ayudar al sector naviero a afrontar las inversiones en dichas tecnologías, así como a impulsar su investigación y promover la creación de una infraestructura portuaria adaptada a suministros de GNL y a descargas de vertidos procedentes de los equipos scrubber. Deberían además, prestar especial atención sobre las ayudas al sector de corta distancia para evitar que pierda competitividad frente a otros medios de transporte por el cumplimiento de esta normativa. Actualmente existen varios programas europeos de incentivos, como TEN-T o Marco Polo, pero no los consideramos suficientes. Por otro lado, la Organización Marítima Internacional debe confirmar cuanto antes si retrasa o no al 2025 la nueva bajada del nivel de azufre en combustibles. De esta manera, se eliminaría la gran incertidumbre temporal que actualmente tienen tanto navieros, como empresas petroleras y puertos para iniciar sus futuras inversiones y poder estudiar la viabilidad de cada alternativa de forma individual. ABSTRACT On 10 October 2008 the International Maritime Organization (IMO) signed an amendment to Annex VI of the MARPOL 73/78 convention establishing a gradual reduction in sulphur oxide (SOx) emissions from ships, and an additional reduction in nitrogen oxide (NOx) emissions and carbon dioxide (CO2) emissions from marine engines which cause environmental problems such as acid rain and the greenhouse effect. According to this regulation, from 1 January 2015, ships travelling in an Emission Control Area (ECA) must use fuels with a sulphur content of less than 0.1%. From 1 January 2020, or alternatively from 2025 if the IMO should decide to delay its introduction, all ships must use fuels with a sulphur content of less than 0.5%. As before, this content will be 0.1%S for voyages within ECAs. Meanwhile, the European Union has gone further than the IMO, and will apply the strictest limits of the MARPOL directives in the waters of its exclusive economic zone from 2020. To this end, Directive 2012/33/EU was issued on 21 November 2013 as an addendum to the 1999 Directive. These laws are intended to improve public health and the environment, benefiting society by reducing disease, particularly respiratory problems. The first question which arises is: what fuel do ships currently use, and what fuel will they have to use to comply with the Convention? Today, large international shipping vessels consume fuel oil with a sulphur level of 3.5%. Do fuel oils exist with a sulphur level of 0.5%S? As we conclude in Chapter 4, oil companies regard marine fuel oil as a by-product of refining Brent to produce their basket of products, as the demand for fuel oil is declining in comparison to other products, and the profit margin on the sale of other petroleum products is higher. Thus, oil companies are not interested in investing in their refineries to produce low-sulphur fuel oils, and if a company should decide to invest in producing a 0.5%S fuel oil, its price would have to be very similar to that of marine gas oil in order to recoup the investment. Therefore, the only fuel which presently complies with the new levels required by the IMO is marine gas oil, which was priced on average 307 USD/tonne higher than current fuel oils during 2014. This higher purchasing price for fuel will have a direct impact on the cost of maritime transport. The entry into force of the above directive presents a challenge for the entire maritime sector. There are various alternative approaches to this situation, with different technical, operational and financial implications. At present three options are the most widespread in the sector. The first option consists of “doing nothing” and simply switching from fuel oil to marine gas oil in large ships. The second option is installing a scrubber system, which would enable ships to continue consuming fuel oil, cleaning the combustion gases before they are released to the atmosphere. And finally, the third option is using Liquefied Natural Gas (LNG), which is priced lower than marine gas oil, as a fuel. However, there is still significant uncertainty on future variations in prices, the operation and maintenance of the new technologies, the investments required, the availability of port infrastructure and even future developments in the international regulations themselves. These uncertainties mean that none of these three alternatives has been unanimously accepted by the sector. In this Thesis, after discussing all the regulations applicable to the sector in Chapter 3, we investigate their consequences. In Chapter 4 we examine whether there are currently any marine fuels on the market which meet the new sulphur limits, and if not, how much new fuels would cost. In Chapter 5, based on the hypothesis that all ships will switch from fuel oil to marine gas oil to comply with the regulations, we calculate the increase in demand for marine gas oil this would lead to, and analyse the consequences this would have on marine gas oil production in the Mediterranean. We also calculate the economic impact such a cost increase would have on Spain's external sector. To do this, we also use the Automatic Identification System (AIS) system to analyse the data of every ship stopping in any Spanish port, in order to calculate the extra cost of using marine gas oil in maritime transport for all Spain's imports and exports. Finally, in Chapter 6, we examine and compare the other two alternatives to marine gas oil, scrubbers and LNG, and in Chapter 7 we analyse the viability of investing in these two technologies in order to comply with the regulations. In Chapter 5 we explain the many existing methods for calculating a ship's fuel consumption. We use a bottom-up calculation method, based on aggregating the activity and characteristics of each type of vessel. The result is based on the installed engine power of each ship, the engine load percentage and its specific consumption. To do this, we analyse the number of ships travelling in the Mediterranean in the course of one year, using the AIS, a marine traffic monitoring system, to take “snapshots” of marine traffic in the Mediterranean and report all ships at sea on random days throughout 2014. Finally, with the above data, we calculate the potential demand for marine gas oil in the Mediterranean. If nothing else is done and ships begin to use marine gas oil instead of fuel oil in order to comply with the regulation, the demand for marine gas oil in the Mediterranean will increase by 12.12 MTA (Millions Tonnes per Annum) from 2020. This means an increase of around 3.72 billion dollars a year in fuel costs, taking as reference the average price of marine fuels in 2014. Such an increase in demand in the Mediterranean would be equivalent to 43% of the total demand for diesel in Spain in 2013, including automotive diesel fuels, biodiesel and marine gas oils, and 3.2% of European consumption of middle distillates in 2014. Would the European market be able to supply enough to meet this greater demand for diesel? Europe has always had a surplus of gasoline and a deficit of middle distillates. In 2009, Europe had to import 4.8 MTA from North America and 22.1 MTA from Asia. Therefore, this increased demand on Europe's already limited capacity for refining middle distillates would lead to increased imports and higher prices, especially in the diesel market. The sector which would suffer the greatest impact of increased demand for marine gas oil would be Mediterranean cruise ships, which represent 30.4% of the fuel demand of the entire world cruise fleet, meaning their fuel costs would rise by 386 million USD per year. ROROs in the Mediterranean, which represent 23.6% of the demand of the world fleet of this type of ship, would see their fuel costs increase by 171 million USD a year. The greatest cost increase would be among container ships, with an increase on current costs of 1.168 billion USD per year. However, their consumption in the Mediterranean represents only 5.3% of worldwide fuel consumption by container ships. These figures raise the question of whether a cost increase of this size for RORO ships would lead to short-distance marine transport in general becoming less competitive compared to other transport options on certain routes. For example, some of the goods that ships now carry could switch to road transport, with the undesirable effects on the environment and on operations that this would produce. In the particular case of Spain, the extra cost of switching to marine gas oil in all ships stopping at any Spanish port in 2013 would be 1.717 billion EUR per year, as we demonstrate in the last part of Chapter 5. For this calculation, we used the AIS system to analyse all ships which stopped at any Spanish port, classifying them by distance travelled, type of ship and engine power. This rising cost of marine transport would be passed on to the Spanish external sector, increasing the cost of imports and exports by sea in a country which relies heavily on maritime transport, which accounts for 75.61% of Spain's total imports and 53.64% of its total exports. The three industries which would be worst affected are those with goods of lower value relative to transport costs. The increased costs over the total value of each good would be 2.94% for wood and cork, 2.14% for mineral products and 1.93% for manufactured stone, cement, ceramic and glass products. Goods entering via the two Spanish archipelagos, the Canary Islands and the Balearic Islands, would suffer the greatest impact from the extra cost of marine transport, as these ports are further away from other major ports and thus the distance travelled is greater. However, this is not the only option for compliance with the new regulations. From our readings in Chapter 6 we conclude that scrubbers and LNG propulsion would enable ships to use cheaper fuels than marine gas oil, in exchange for investing in these technologies. Would the savings gained by these new technologies be enough to justify the investment? To answer this question, in Chapter 7 we compare the three alternatives and calculate both the cost of investment and the operating costs associated with scrubbers or LNG propulsion for a selection of 53 categories of ships. Investing in scrubbers is more advisable for large ships with no fixed runs. However, for smaller ships with regular runs to ports with good LNG supply infrastructure, investing in LNG propulsion would be the best choice. In the case of total transit time within an ECA and the pricing scenario seen in 2014, the best payback periods on investments in scrubbers are for large cruise ships (100,000 gross tonnage), which would recoup their investment in 0.62 years; large container ships, with a 0.64 year payback period for those over 8,000 TEUs and 0.71 years for the 5,000-8,000 TEU category; and finally, large oil tankers over 200,000 deadweight tonnage, which would recoup their investment in 0.82 years. However, investing in scrubbers would have a longer payback period for smaller ships, up to 5 years or more for oil tankers and chemical tankers under 5,000 deadweight tonnage. In the case of LNG propulsion, a possible investment is more favourable and the payback period is shorter for smaller ship classes, such as ferries, cruise ships and ROROs. We now take the case of a ship transporting clean products, already built, with a deadweight tonnage of 38,500, and consider the viability of investing in installing a scrubber or changing to LNG propulsion, starting in 2015. The two variables with the greatest impact on the advisability of the investment are how long the ship is at sea within emission control areas (ECA) and the future price scenario of MGO, HSFO and LNG. For this analysis, we studied each investment, calculating a battery of merit conditions such as the payback period, IRR, NPV and variations in the investors' liquid assets. We then calculated the minimum boundary conditions to ensure the investment was not only acceptable but advisable for the investor shipowner. Thus, for the average price differential of 264.35 USD/tonne between HSFO and MGO during 2014, investors' return on investment (IRR) in scrubbers would be the same as the required opportunity cost of 9.6%, for values of over 56% ship transit time in ECAs. For the case of investing in LNG and the average price differential between MGO and LNG of 353.8 USD/tonne FOE in 2014, the ship must spend 64.8% of its time in ECAs for the investment to be advisable. For an estimated 60% of time in an ECA, the internal rate of return (IRR) for investors equals the required opportunity cost of 9.6%, based on a price difference of 244.73 USD/tonne between the two alternative fuels, marine gas oil (MGO) and fuel oil (HSFO). An investment in LNG propulsion would require a price differential between MGO and LNG of 382.3 USD/tonne FOE. Thus, for a 38,500 DWT ship carrying clean products, investing in retrofitting to install a scrubber is more advisable than converting to LNG, with an internal rate of return (IRR) for investors of 12.77%, compared to 6.81% for investing in LNG. Both calculations were based on a ship which spends 60% of its time at sea in an ECA and a scenario of average 2014 prices. However, for newly-built ships, investments in either of these technologies from 2025 would be advisable. Here, the shipowner must pay particular attention to the specific characteristics of their ship, the type of operation, and the infrastructure for supplying fuel and handling discharges in the ports where it will usually operate. Thus, while the consequences of switching to marine gas oil in order to comply with the MARPOL regulations are certainly alarming, there are alternatives to marine gas oil, with smaller increases in the costs of maritime transport, while maintaining the benefits to society this law is intended to provide. Indeed, as we have demonstrated, the options which appear most favourable from a financial viewpoint are conversion to LNG for small ships and regular runs (cruise ships, ferries, ROROs), and installing scrubbers for large ships. Unfortunately, however, these investments are not being made, due to the high uncertainty associated with these two markets, which increases business risk, both for shipowners and for the providers of these new technologies. This means we are seeing considerable reluctance regarding these two options among the private sector. This high level of risk can be lowered only by encouraging joint efforts by the public and private sectors to overcome these barriers to entry into the market for scrubbers and LNG, which could reduce the environmental externalities of emissions without affecting the competitiveness of marine transport. Our opinion is that the same bodies which approved this law must help the shipping industry invest in these technologies, drive research on them, and promote the creation of a port infrastructure which is adapted to supply LNG and handle the discharges from scrubber systems. At present there are several European incentive programmes, such as TEN-T and Marco Polo, but we do not consider these to be sufficient. For its part, the International Maritime Organization should confirm as soon as possible whether the new lower sulphur levels in fuels will be postponed until 2025. This would eliminate the great uncertainty among shipowners, oil companies and ports regarding the timeline for beginning their future investments and for studying their viability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O objetivo principal deste estudo foi determinar a origem da inibição do processo foto-Fenton [Fe(II)/Fe(III), H2O2, luz UV] pelo íon cloreto. Um estudo das reações primárias da etapa fotocatalítica do processo foto-Fenton por fotólise por pulso de laser na presença de NaCl mostrou que a inibição reflete: i) fotólise competitiva dos complexos Fe(Cl)2+ e Fe(Cl)2+; ii) captura do radical hidroxila (dependente do pH) pelo íon cloreto. Esses dois processos formam o ânion radical menos reativo Cl2•- em lugar do radical HO•-, provocando uma progressiva inibição da reação de degradação com a diminuição do pH. Modelagem cinética destes resultados previa que a manutenção do pH em 3,0 durante a fotodegradação evitaria a formação do Cl2•-, o que foi confirmada através de experimentos de fotodegradação do fenol e da gasolina em meio aquoso na presença de NaCl. Por outro lado, na degradação do fenol pela reação térmica de Fenton [Fe(II)/Fe(III), H2O2], o radical hidroxila não parece ter um papel muito importante. A degradação térmica não foi inibida pela presença de íon cloreto e a cinética de mineralização do fenol pela reação térmica de Fenton é indistinguível da degradação do fenol pelo processo foto-Fenton inibido por NaCl. Isso sugere que a reação proposta por Hamilton, isto é, a redução de Fe(III) a Fe(II) por catecol (o principal intermediário inicial da oxidação do fenol) na presença de H2O2, é o mecanismo principal de catálise da reação térmica de Fenton no nosso sistema.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Superfícies anisotrópicas lisas e rugosas foram usadas para avaliar o efeito da rugosidade e da direção de acabamento na formação de MoS2 a partir de MoDTC em ensaios tribologicos lubrificados com óleos de motor completamente formulados. Igualmente foi avaliada a resposta de atrito de lubrificantes de motor usados em carros de passageiros e em testes de dinamômetro abastecidos com etanol (E100) e gasolina (E22). Encontrou-se que tanto a direção de acabamento quanto a rugosidade foram fundamentais na reação MoDTC - MoS2. A direção de acabamento influenciou na medida que carregamentos tangenciais geram respostas diferentes nos ensaios quando são realizados paralelos e perpendiculares às linhas de acabamento, dado que para os últimos apresenta-se maior deformação plástica das asperezas, o qual favorece a obtenção de superfícies livres de óxidos, que tem sido indicada como uma condição necessário para que aconteça a reação MoDTC - MoS2. Por esta razão os valores de coeficiente de atrito próprios da formação de MoS2 foram obtidos somente nas superfícies rugosas ensaiadas perpendiculares às marcas de acabamento. Para superfícies com valores de índice de plasticidade superiores a 1 e nos quais não são formados filmes com boas capacidades redutoras de atrito, como é o caso de ensaios realizados com óleos base (livres de aditivos), o coeficiente de atrito não depende da rugosidade e da direção de acabamento. Nos ensaios lubrificados com óleos usado, encontraram-se valores de coeficiente de atrito similares aos obtidos nas condições de lubrificação com óleo livres de aditivos, devido provavelmente à redução do MoDTC no lubrificante como tem sido identificado por diferentes autores. Quando foram comparados os óleos usados contaminados com etanol com os óleos usados contaminados com gasolina, encontrou-se maior oxidação nestes últimos. Mesmo que estas diferenças de oxidação dos óleos não significaram diferenças em termos de atrito, estas podem ser importantes na medida em que óleos mais oxidados podem favorecer o desgaste oxidativo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article, the past and the state-of-the-art in Three-Way Catalyst (TWC) technology are reviewed. The main chemical reactions occurring in a gasoline engine are discussed and also the main reactions taking place in a TWC placed in the tailpipe, namely CO and hydrocarbons oxidation and nitrogen oxides reduction to molecular nitrogen. The main components of a TWC (substrates, noble metals and cerium oxides) and their role in the different chemical reactions occurring in a TWC are described. Finally, the problem of diesel vehicles gas aftertratment is described, and the current state-of-the art in catalytic converters for these vehicles are commented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A necessidade de encontrar recursos alternativos aos combustíveis fósseis, faz com que os biocombustíveis sejam a opção a curto prazo para a sua substituição parcial ou integral. O presente trabalho faz a abordagem de diversos tipos de biocombustíveis, desde a primeira geração aos biocombustíveis avançados, ao enquadramento legal e normativo destes. As temáticas seguintes, visam a implementação de metodologias de análise físico-químicas de biocombustíveis, com base nas Normas Europeias prEN 14214 e EN 15376, no Laboratório de Análise Instrumental da Escola Superior de Tecnologia e Gestão do Politécnico de Leiria e a análise dos recursos e respetivas conversões em biocombustíveis, na Região de Leiria. E assim, verificar a sua sustentabilidade, relativamente à incorporação em combustíveis fósseis. Uma contribuição para permitir posteriormente serem realizados estudos de viabilidade económica para a instalação de unidades de produção de biocombustíveis avançados. Metodologias de análise físico-química de biocombustíveis foram implementadas no laboratório, sendo que algumas necessitariam de ser validadas. De um modo geral, verifica-se que o laboratório pode ser utilizado para analisar a maioria dos parâmetros do bioetanol e de alguns dos parâmetros do biodiesel. No entanto, foram levantadas as necessidades do laboratório para a realização dos ensaios para os restantes parâmetros não implementados. A quantificação dos recursos teve por base os resíduos de óleos alimentares usados e os resíduos da biomassa florestal da Região de Leiria. Constatou-se que existe uma elevada quantidade de resíduos lenho-celulósicos, que permite à região ser autossustentável, relativamente aos biocombustíveis substitutos da gasolina. Estes resíduos podem ser utilizados sem comprometer a sustentabilidade da floresta. Relativamente aos resíduos de óleos alimentares usados, verificou-se que existe escassez deste recurso para incorporação de biodiesel no diesel e uma disparidade do que era teoricamente previsível para o que é realmente recolhido, como tal, é necessário sensibilizar as pessoas para a valorização deste resíduo, que afeta a operacionalidade das ETAR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Refinería La Pampilla S.A.A. (RLP) y su subsidiaria, Repsol Comercial S.A.C. (RECOSAC), se dedican a la refinación y comercialización de hidrocarburos. La refinación de crudos es un negocio de márgenes en donde el precio del crudo, el precio internacional de los productos que comercializa y la eficiencia en el manejo de inventarios son variables claves para determinar la rentabilidad del negocio. El mercado en el que operan es altamente regulado, principalmente en lo que respecta a la calidad de los productos, lo cual se evidencia en los cambios de la normativa relacionada al contenido contaminante en los hidrocarburos. Dichos cambios han ocasionado que RLP invierta en el proyecto de desulfurización de diésel y gasolina (RLP 21), el cual se encontrará operativo a mediados del año 2016. Así, RLP pretende maximizar la utilización de la capacidad de refinación, produciendo diésel con contenido no mayor a 50 partes por millón (ppm) de azufre; asimismo, producirá gasolina con menor contenido contaminante. Se ha valorizado a RLP y RECOSAC bajo el método de flujo de caja descontando, siendo su valor fundamental de S/. 1,22 por acción (T.C. S/. 2,88 a diciembre de 2014), mayor al precio de mercado de S/. 0,21. Esta diferencia se debe a que en la valorización de RLP se incluye un cambio estructural que le permitirá producir diésel de bajo azufre, el cual es uno de los productos de mayor demanda nacional, obteniendo así una ventaja ante su principal competencia, Petroperú. Asimismo, la ejecución del proyecto permitirá afrontar requerimientos regulatorios y mejorar eficiencia (incrementar capacidad de planta y reducir costos). A pesar que las fluctuaciones del precio del crudo afectan a RLP, se espera que los precios se recuperen en los próximos años impactando positivamente en los resultados de la empresa. Considerando que RLP no cuenta con una política de dividendos establecida y que durante los dos últimos años ha presentado pérdidas producto de fluctuaciones en el precio del crudo, problemas climáticos (mala mar) y regulatorios, no se considera conveniente valorizar a RLP bajo el método de descuento por dividendos. Asimismo, tomando en cuenta que no existen empresas comparables no se realizó la valorización bajo el método de múltiplos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En el siguiente documento se presenta un análisis sobre el futuro comportamiento del recaudo por la sobretasa a la gasolina en el municipio de Cali. Para tal fin, se emplean modelos Arima a partir de los cuales se proveen proyecciones para las ventas de gasolina corriente y extra. Además, se emplean proyecciones de precios basadas en los supuestos del Confis, EAI y Ecopetrol con el fin de determinar la evolución para los próximos años tanto de la base como del recaudo por cuenta de este impuesto indirecto. A partir de estos cálculos se concluye que el municipio de Cali podrá cumplir con las contribuciones pactadas en el documento Conpes 3166 del 2002 para la financiación del S.I.T.M.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Construyendo herramientas para el seguimiento de las finanzas públicas territoriales del Valle del Cauca y Cali - Relaciones público-privadas en contratos de concesión y estabilidad jurídica. - Educar para la intervención social: retos de la academia. - El futuro de la Sobretasa a la gasolina y la financiación del Sistema Integrado de Transporte Masivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O chumbo é utilizado em muitos produtos, tais como baterias, gasolina, tintas e corantes, resultando na sua libertação no meio ambiente. Neste trabalho, foi examinado o papel da parede celular da levedura Saccharomyces cerevisiae como uma barreira ou como alvo da toxicidade do chumbo. A biodisponibilidade do Pb é muito reduzida pelos componentes do meio de cultura YEPD, o que dificulta a avaliação da toxicidade deste elemento em concentrações ambientalmente realistas. Para avaliar a toxicidade de Pb em S. cerevisiae, em condições de crescimento, foram efetuadas diferentes diluições (10-100 vezes) do meio YEPD, as quais foram misturadas com várias concentrações de Pb (0,1-1,0 mmol/l). Observou-se que o YEPD diluído 25 vezes constituía a melhor condição de compromisso entre o crescimento celular e a precipitação de Pb. Os genes CWP1 e CWP2 codificam para duas grandes manoproteínas da parede celular da levedura S. cerevisiae; a deleção destes genes CWP aumenta a permeabilidade da parede celular. A suscetibilidade de células de levedura interrompidas no gene CWP1 (estirpe cwp1Δ) ou CWP2 (estirpe cwp2Δ) foi comparada com a da estirpe, isogénica, selvagem (WT). Verificou-se que o crescimento das estirpes cwp1Δ e cwp2Δ, no meio de cultura YEPD 25 vezes diluído, na presença de Pb, não diferiu do crescimento da estirpe WT. Este resultado sugere que a alteração da permeabilidade da parede celular não altera a sensibilidade de células de levedura ao Pb. Foi investigada o impacto do Pb na parede celular de levedura. Para este efeito, comparou-se a suscetibilidade ao dodecil sulfato de sódio (SDS), ao calcofluor (CFW) e a uma enzima que degrada a parede da célula (liticase), em células da estirpe WT não expostas ou expostas a Pb durante 4, 8 ou 24 h. Além disso, o conteúdo de quitina da parede celular de levedura foi investigada por coloração das células com CFW. Os resultados não mostraram uma alteração da suscetibilidade ao SDS e ao CFW, nas células tratadas com Pb; contudo, nas células tratadas durante 24 h com Pb, observou-se um aumento da sensibilidade à liticase e um aumento da coloração com CFW. Estes resultados sugerem que o chumbo interage com a parede celular da levedura e influencia a sua composição. Deve ser levado a cabo trabalho adicional a fim de confirmar estes resultados.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Colombia se está iniciando en bioenergía y necesita de políticas e infraestructura para la producción de biocombustibles. En los últimos años, losbiocombustibles vienen avanzando apoyados por la adopción de decretos de ley que permiten la introducción de biocombustibles, mezclados, en primera instancia, con combustibles fósiles como la gasolina y el diésel. Este artículo de “revisión de tema” presenta el comienzo y desarrollo de los biocombustibles en Colombia y la situación actual de la producción, las empresas y las entidades que lideran este proyecto, con el fin de adoptar una fuente de energía renovable y sostenible. En el análisis de este tema sobre biocombustibles en Colombia se apunta un claro comienzo a la independencia de combustibles fósiles, con la premisa de una matriz energética sostenible que asegure el crecimiento de la industria, el desarrollo social y la preservación del ambiente. Por otro lado, se observa la tendencia mundial a la adopción de biocombustibles principalmente en países dependientes del petróleo, siendo los suramericanos como Brasil, Colombia y Argentina los abanderados en estas propuestas. Colombia presenta, a su vez, recursos en este ámbito en disponibilidad de tierras, mano de obra, políticas internas de consumo y producción, que coexisten con dificultades en desigualdad social, conflictos internos, monopolios y trabas políticas que podrían impedir inversión privada y extranjera

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste trabalho é descrita a síntese de novos N-acilaminoácidos e Nacilaminoésteres graxos derivados de ácidos graxos saturados e insaturados como, por exemplo, esteárico e ricinoléico, respectivamente. Após, foi avaliada a capacidade destes compostos para a gelificação de hidrocarbonetos e as propriedades dos géis formados foram estudadas pelas técnicas de Espectroscopia de Infravermelho (IV) e Calorimetria de Varredura Diferencial (DSC). A síntese dos N-acilaminoésteres graxos foi realizada na presença de DCC, DMAP e dos respectivos aminoésteres e ácidos graxos. Os N-acilaminoésteres graxos 11-15a-d foram isolados em rendimentos que variaram de 50-84%, após 12h de reação a temperatura ambiente. Os N-acilaminoácidos graxos 16-20a-d foram obtidos a partir da hidrólise básica de 11-15a-d realizada a temperatura ambiente, em rendimentos que variaram de 34-80%. A seguir foi realizado o estudo de gelificação com todos os compostos sintetizados para verificar a influência das diferentes cadeias graxas e dos grupos laterais dos aminoácidos e aminoésteres na gelificação de tolueno, hexano e gasolina. As análises de DSC e IV mostraram que a estabilidade dos géis dependeu do tipo e do tamanho da cadeia lipofílica e também da natureza dos grupos laterais ligados ao átomo de nitrogênio. Dentre os compostos testados os compostos 17a-b de cadeia satura (C16:0 e C18:0) e 19a (C16:0), derivados da alanina e da fenilalanina, respectivamente, formaram géis em hexano, gasolina e tolueno. Pela primeira vez foram citadas as capacidades de gelificação de hidrocarbonetos pelos Nacilaminoésteres graxos 15a-b de cadeia saturada, derivados da serina, sendo os géis derivados destes compostos os mais estáveis termicamente dentre todos os obtidos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work is performed the study of the hexane isomers separation with MOFs in order to improve the octane number of gasoline. The studies were performed with MOFs: MIL-125-Amine, MIL-53(Fe)-Cl, MIL-53(Fe)-Br and Fe-TazBz(DMF). It was observed that higher loadings were obtained for high pressure and low temperature. With MOFs like MIL-53(Fe)-Cl and MIL-53(Fe)-Br the components weren’t separated. In MIL-125-Amine hexane isomers were separated according to their boiling point, but the selectivity was small. The best result was obtained with MOF Fe-TazBz(DMF), because of the higher affinity of n-hex with this MOF, the separation from the other isomers was easier.