989 resultados para GAMMA-GAMMA
Resumo:
Statistical distributions have been extensively used in modeling fading effects in conventional and modern wireless communications. In the present work, we propose a novel κ − µ composite shadowed fading model, which is based on the valid assumption that the mean signal power follows the inverse gamma distribution instead of the lognormal or commonly used gamma distributions. This distribution has a simple relationship with the gamma distribution, but most importantly, its semi heavy-tailed characteristics constitute it suitable for applications relating to modeling of shadowed fading. Furthermore, the derived probability density function of the κ − µ / inverse gamma composite distribution admits a rather simple algebraic representation that renders it convenient to handle both analytically and numerically. The validity and utility of this fading model are demonstrated by means of modeling the fading effects encountered in body centric communications channels, which have been known to be susceptible to the shadowing effect. To this end, extensive comparisons are provided between theoretical and respective real-time measurement results. It is shown that these comparisons exhibit accurate fitting of the new model for various measurement set ups that correspond to realistic communication scenarios.
Resumo:
In this paper we propose a new composite fadingmodel which assumes that the mean signal power of an η−µ signalenvelope follows an inverse gamma distribution. The inversegamma distribution has a simple relationship with the gammadistribution and can be used to model shadowed fading due to itssemi heavy-tailed characteristics. To demonstrate the utility of thenew η−µ / inverse gamma composite fading model, we investigatethe characteristics of the shadowed fading behavior observed inbody centric communications channels which are known to besusceptible to shadowing effects, particularly generated by thehuman body. It is shown that the η−µ / inverse gamma compositefading model provided an excellent fit to the measurement data.Moreover, using Kullback-Leibler divergence, the η −µ / inversegamma composite fading model was found to provide a better fitto the measured data than the κ − µ / inverse gamma compositefading model, for the communication scenarios considered here.
Resumo:
Many-body theory is developed to calculate the γ spectra for positron annihilation in noble-gas atoms. Inclusion of electron-positron correlation effects and core annihilation gives spectra in excellent agreement with experiment [K. Iwata et al., Phys. Rev. Lett. 79, 39 (1997)]. The calculated correlation enhancement factors γnl for individual electron orbitals nl are found to scale with the ionization energy Inl (in eV), as γnl=1+ √A/Inl+(B/Inl)β, where A≈40 eV, B≈24 eV, and β≈2.3.
Resumo:
This paper investigates the characteristics of the shadowed fading observed in off-body communications channels at 5.8 GHz. This is realized with the aid of the $\kappa-\mu$ / gamma composite fading model which assumes that the transmitted signal undergoes $\kappa-\mu$ fading which is subject to \emph{multiplicative} shadowing. Based on this, the total power of the multipath components, including both the dominant and scattered components, is subject to non-negligible variations that follow the gamma distribution. For this model, we present an integral form of the probability density function (PDF) as well as important analytic expressions for the PDF, cumulative distribution function, moments and moment generating function. In the case of indoor off-body communications, the corresponding measurements were carried out in the context of four explicit individual scenarios namely: line of sight (LOS) and non-LOS (NLOS) walking, rotational and random movements. The measurements were repeated within three different indoor environments and considered three different hypothetical body worn node locations. With the aid of these results, the parameters for the $\kappa-\mu$ / gamma composite fading model were estimated and analyzed extensively. Interestingly, for the majority of the indoor environments and movement scenarios, the parameter estimates suggested that dominant signal components existed even when the direct signal path was obscured by the test subject's body. Additionally, it is shown that the $\kappa-\mu$ / gamma composite fading model provides an adequate fit to the fading effects involved in off-body communications channels. Using the Kullback-Leibler divergence, we have also compared our results with another recently proposed shadowed fading model, namely the $\kappa-\mu$ / lognormal LOS shadowed fading model. It was found that the $\kappa-\mu$ / gamma composite fading model provided a better fit for the majority of the scenarios considered in this study.
Resumo:
PURPOSE: To provide a tool to enable gamma analysis software algorithms to be included in a quality assurance (QA) program.
METHODS: Four image sets were created comprising two geometric images to independently test the distance to agreement (DTA) and dose difference (DD) elements of the gamma algorithm, a clinical step and shoot IMRT field and a clinical VMAT arc. The images were analysed using global and local gamma analysis with 2 in-house and 8 commercially available software encompassing 15 software versions. The effect of image resolution on gamma pass rates was also investigated.
RESULTS: All but one software accurately calculated the gamma passing rate for the geometric images. Variation in global gamma passing rates of 1% at 3%/3mm and over 2% at 1%/1mm was measured between software and software versions with analysis of appropriately sampled images.
CONCLUSION: This study provides a suite of test images and the gamma pass rates achieved for a selection of commercially available software. This image suite will enable validation of gamma analysis software within a QA program and provide a frame of reference by which to compare results reported in the literature from various manufacturers and software versions.
Resumo:
γ-Ray sources are among the most fundamental experimental tools currently available to modern physics. As well as the obvious benefits to fundamental research, an ultra-bright source of γ-rays could form the foundation of scanning of shipping containers for special nuclear materials and provide the bases for new types of cancer therapy.
However, for these applications to prove viable, γ-ray sources must become compact and relatively cheap to manufacture. In recent years, advances in laser technology have formed the cornerstone of optical sources of high energy electrons which already have been used to generate synchrotron radiation on a compact scale. Exploiting the scattering induced by a second laser, one can further enhance the energy and number of photons produced provided the problems of synchronisation and compact γ-ray detection are solved.
Here, we report on the work that has been done in developing an all-optical and hence, compact non-linear Thomson scattering source, including the new methods of synchronisation and compact γ-ray detection. We present evidence of the generation of multi-MeV (maximum 16–18 MeV) and ultra-high brilliance (exceeding 1020 photons s−1mm−2mrad−2 0.1% BW at 15 MeV) γ-ray beams. These characteristics are appealing for the paramount practical applications mentioned above.
Resumo:
Since 1999, the rapid, inexpensive and non-destructive use of Th/K and Th/U ratios from spectral gamma ray measurements have been used as a proxy for changes in palaeo-hinterland weathering. This model is tested here by analysis of in situ palaeoweathering horizons where clay mineral contents are well-known. A residual palaeoweathered horizon of Palaeogene laterite (developed on basalt) has been logged at 14 locations across N. Ireland using spectral gamma ray detectors. The results are compared to published elemental and mineralogical data. While the model of K and U loss during the early stages of weathering to smectite and kaolinite is supported, the formation (during progressively more advanced weathering) of gibbsite and iron oxides has reversed the predicted pattern and caused U and Th retention in the weathering profile. The severity (duration, humidity) of weathering and palaeoweathering may be estimated using Th/K ratios as a proxy. The use of Th/U ratios is more problematic should detrital gibbsite (or similar clays) or iron oxides be detected. Mineralogical analysis is needed in order to evaluate the hosts for K, U and Th: nonetheless, the spectral gamma ray machine offers a real-time, inexpensive and effective tool for the preliminary or conjunctive assessment of degrees of weathering or palaeoweathering.
Resumo:
The development of a compact gamma camera with high spatial resolution is of great interest in Nuclear Medicine as a means to increase the sensitivity of scintigraphy exams and thus allow the early detection of small tumours. Following the introduction of the wavelength-shifting fibre (WSF) gamma camera by Soares et al. and evolution of photodiodes into highly sensitive silicon photomultipliers (SiPMs), this thesis explores the development of a WSF gamma camera using SiPMs to obtain the position information of scintillation events in a continuous CsI(Na) crystal. The design is highly flexible, allowing the coverage of different areas and the development of compact cameras, with very small dead areas at the edges. After initial studies which confirmed the feasibility of applying SiPMs, a prototype with 5 5 cm2 was assembled and tested at room temperature, in an active field-of-view of 10 10 mm2. Calibration and characterisation of intrinsic properties of this prototype were done using 57Co, while extrinsic measurements were performed using a high-resolution parallel-hole collimator and 99mTc. In addition, a small mouse injected with a radiopharmaceutical was imaged with the developed prototype. Results confirm the great potential of SiPMs when applied in a WSF gamma camera, achieving spatial resolution performance superior to the traditional Anger camera. Furthermore, performance can be improved by an optimisation of experimental conditions, in order to minimise and control the undesirable effects of thermal noise and non-uniformity of response of multiple SiPMs. The development and partial characterisation of a larger SiPM WSF gamma camera with 10 10 cm2 for clinical application are also presented.
Resumo:
The evolution of calcified tissues is a defining feature in vertebrate evolution. Investigating the evolution of proteins involved in tissue calcification should help elucidate how calcified tissues have evolved. The purpose of this study was to collect and compare sequences of matrix and bone γ-carboxyglutamic acid proteins (MGP and BGP, respectively) to identify common features and determine the evolutionary relationship between MGP and BGP. Thirteen cDNAs and genes were cloned using standard methods or reconstructed through the use of comparative genomics and data mining. These sequences were compared with available annotated sequences (a total of 48 complete or nearly complete sequences, 28 BGPs and 20 MGPs) have been identified across 32 different species (representing most classes of vertebrates), and evolutionarily conserved features in both MGP and BGP were analyzed using bioinformatic tools and the Tree-Puzzle software. We propose that: 1) MGP and BGP genes originated from two genome duplications that occurred around 500 and 400 million years ago before jawless and jawed fish evolved, respectively; 2) MGP appeared first concomitantly with the emergence of cartilaginous structures, and BGP appeared thereafter along with bony structures; and 3) BGP derives from MGP. We also propose a highly specific pattern definition for the Gla domain of BGP and MGP. Previous Section Next Section BGP1 (bone Gla protein or osteocalcin) and MGP (matrix Gla protein) belong to the growing family of vitamin K-dependent (VKD) proteins, the members of which are involved in a broad range of biological functions such as skeletogenesis and bone maintenance (BGP and MGP), hemostasis (prothrombin, clotting factors VII, IX, and X, and proteins C, S, and Z), growth control (gas6), and potentially signal transduction (proline-rich Gla proteins 1 and 2). VKD proteins are characterized by the presence of several Gla residues resulting from the post-translational vitamin K-dependent γ-carboxylation of specific glutamates, through which they can bind to calcium-containing mineral such as hydroxyapatite. To date, VKD proteins have only been clearly identified in vertebrates (1) although the presence of a γ-glutamyl carboxylase has been reported in the fruit fly Drosophila melanogaster (2) and in marine snails belonging to the genus Conus (3). Gla residues have also been found in neuropeptides from Conus venoms (4), suggesting a wider prevalence of γ-carboxylation.
Resumo:
Naturally occurring radioactive materials (NORM) under certain conditions can reach hazardous radiological levels contributing to an additional exposure dose to ionizing radiation. Most environmental concerns are associated with uranium mining and milling sites, but the same concerns should be addressed to natural near surface occurrences of uranium as well as man-made sources such as technologically enhanced naturally occurring radioactive materials (TENORM) resulting from phosphates industry, ceramic industry and energy production activities, in particular from coal-fired power plants which is one of the major sources of increased exposure to man from enhanced naturally occurring materials. This work describes the methodology developed to assess the environmental radiation by in situ gamma spectrometry in the vicinity of a Portuguese coal fired power plant. The current investigation is part of a research project that is undergoing in the vicinity of Sines Coal-Fired Power Plant (south of Portugal) until the end of 2013.
Resumo:
A set of radiation measurements were carried out in several public and private institutions. These were selected with basis on the people affluence and passage to these sites. These measurements were registration formed either indoor, outdoor or underground and were compiled in three Case Studies. Radiation doses measurements were also made, surface and underground locations, and compiled in other two Case Studies. There were sampled, at the same time, humidity, temperature, atmospheric pressure and relevant construction materials at sampling locations. They were collected and registration formed to analyse if there is any relation or contribution for the measured value in each specific place. Geostatistical models were used to elaborate maps of the results both for radiation values and for doses. Preliminary relations were established among the measured parameters.
Resumo:
Interferon-gamma (IFN-gamma) modulates the expression of Class II major histocompatibility antigens (MHC), thus providing a potential regulatory mechanism for local immune reactivity in the context of MHC-restricted antigen presentation. Within the central nervous system (CNS), the expression of MHC Class II antigens has been demonstrated on human reactive astrocytes and glioma cells. In order to investigate the modulation of HLA-DR on normal astrocytes, two cell lines were grown from a 20-week-old fetal brain. In situ none of the fetal brain cells expressed HLA-DR as determined by immunohistology on frozen tissue sections. The two cell lines, FB I and FB II, expressed GFAP indicating their astrocytic origin. FB I was HLA-DR negative at the first tissue culture passages, but could be induced to express HLA-DR when treated with 500 U/ml IFN-gamma. FB II was spontaneously HLA-DR positive in the early passages, lost the expression of this antigen after 11 passages and could also be induced to express HLA-DR by IFN-gamma. The induction of HLA-DR expression was demonstrated both by a binding RIA and by immunoprecipitation using a monoclonal antibody (MAB) directed against a monomorphic determinant of HLA-DR. The HLA-DR alloantigens were determined on FB II cells after IFN-gamma treatment, by immunofluorescence and by cytotoxicity assays, and were shown to be DR4, DR6, Drw52, DRw53 and DQwl. These results show that human fetal astrocytes can be induced to express HLA-DR by IFN-gamma in vitro and support the concept that astrocytes may function as antigen-presenting cells.
Resumo:
Since the 1990s, regular comparisons of gamma-ray spectrometry in Switzerland were organized to improve laboratory abilities to measure the radioactivity in the environment and food stuffs at typical routine levels. The activity concentration of the test samples and the evaluation of the associated uncertainties remained each year the main required test result. Over the years, the comparisons used certified reference solutions as well as environmental samples. The aim of this study is to research the effect of the comparisons on measurement quality. An analysis of the seven last interlaboratory comparisons revealed that the Swiss measurement capability is up to date. In addition, the results showed that the participants now have an improved evaluation of the uncertainties associated with their measurement.