918 resultados para G520 Systems Design Methodologies
Resumo:
This work addresses the optimization of ammonia–water absorption cycles for cooling and refrigeration applications with economic and environmental concerns. Our approach combines the capabilities of process simulation, multi-objective optimization (MOO), cost analysis and life cycle assessment (LCA). The optimization task is posed in mathematical terms as a multi-objective mixed-integer nonlinear program (moMINLP) that seeks to minimize the total annualized cost and environmental impact of the cycle. This moMINLP is solved by an outer-approximation strategy that iterates between primal nonlinear programming (NLP) subproblems with fixed binaries and a tailored mixed-integer linear programming (MILP) model. The capabilities of our approach are illustrated through its application to an ammonia–water absorption cycle used in cooling and refrigeration applications.
Resumo:
We address the optimization of discrete-continuous dynamic optimization problems using a disjunctive multistage modeling framework, with implicit discontinuities, which increases the problem complexity since the number of continuous phases and discrete events is not known a-priori. After setting a fixed alternative sequence of modes, we convert the infinite-dimensional continuous mixed-logic dynamic (MLDO) problem into a finite dimensional discretized GDP problem by orthogonal collocation on finite elements. We use the Logic-based Outer Approximation algorithm to fully exploit the structure of the GDP representation of the problem. This modelling framework is illustrated with an optimization problem with implicit discontinuities (diver problem).
Resumo:
The increase of building pathologies related to the use of stone materials and the use of ventilated stone veneers, requires the reformulation of design concepts in building façades and also the reformulation of the architectural project. The aim of this paper is to identify, analyze and evaluate synthetically building pathologies in stone ventilated façades in order to obtain the main technical conditions to be considered in the architectural design, by interpreting its mechanical behavior and capabilities to prevent such pathologies and to ensure the proper features during the building lifetime. The methodology is based on both laboratory stone tests and in situ tests about construction systems, by analyzing physical and mechanical behavior of the outer layer in relation to other building requirements. The results imply the need of proper sizing, specific quality control and practical application of calculation methods, to control high concentration pressures in ventilated façades by reaching appropriate project solutions. In conclusion, the research about different pathologies of stone ventilated façades, the study of their mechanical behavior, their anchorage and their connection with their constructive aspects, will help to improve the construction quality of the stone ventilated façade in buildings and to enhance the use of natural stone in modern architecture.
Resumo:
Article is devoted to design of optimum electromagnets for magnetic levitation of transport systems. The method of electromagnets design based on the inverse problem solution of electrical equipment is offered. The method differs from known by introducing a stage of minimization the target functions providing the stated levitation force and magnetic induction in a gap, and also the mass of an electromagnet. Initial values of parameters are received, using approximate formulas of the theory of electric devices and electrical equipment. The example of realization of a method is given. The received results show its high efficiency at design. It is practical to use the offered method and the computer program realizing it as a part of system of the automated design of electric equipment for transport with a magnetic levitation.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Federal Highway Administration, Office of Research and Development, Washington, D.C.
Resumo:
Federal Highway Administration, Office of Research and Development, Washington, D.C.
Resumo:
"September 1989."
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Includes bibliographical references
Resumo:
Includes bibliographical references.
Resumo:
Federal Highway Administration, Office of Safety and Traffic Operations Research and Development, McLean, Va.
Resumo:
Mode of access: Internet.