986 resultados para Functionally graded materials


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present investigation, soft materials, such as Al-4Mg alloy, high-purity Al and pure Mg pins were slid against hard steel plates of various surface textures to study the response of materials during sliding. The experiments were conducted using an inclined pin-on-plate sliding apparatus under both dry and lubricated conditions in an ambient environment. Two kinds of frictional response, namely steady-state and stick-slip, were observed during sliding. In general, the response was dependent on material pair, normal load, lubrication, and surface texture of the harder material. More specifically, for the case of Al-4Mg alloy, the stick-slip response was absent under both dry and lubricated conditions. For Al, stick-slip was observed only under lubricated conditions. For the case of Mg, the stick-slip response was seen under both dry and lubricated conditions. Further, it was observed that the amplitude of stick-slip motion primarily depends on the plowing component of friction. The plowing component of friction was the highest for the surfaces that promoted plane strain conditions and was the lowest for the surfaces that promoted plane stress conditions near the surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study a class of symmetric discontinuous Galerkin methods on graded meshes. Optimal order error estimates are derived in both the energy norm and the L 2 norm, and we establish the uniform convergence of V-cycle, F-cycle and W-cycle multigrid algorithms for the resulting discrete problems. Numerical results that confirm the theoretical results are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop lightweight, multilayer materials composed of alternating layers of poly dimethyl siloxane (PDMS) polymer and vertically aligned carbon nanotube (CNT) arrays, and characterize their mechanical response in compression. The CNT arrays used In the assembly are synthesized with graded mechanical properties along their thickness, and their use enables the creation of multilayer structures with low density (0.12-0.28 g/cm(3)). We test the mechanical response of structures composed of different numbers of CNT layers partially embedded in PDMS polymer, under quasi-static and dynamic loading. The resulting materials exhibit a hierarchical, fibrous structure with unique mechanical properties: They can sustain large compressive deformations (up to similar to 0.8 strain) with a nearly complete recovery and present strain localization in selected sections of the materials. Energy absorption, as determined by the hysteresis observed In stress-strain curves, is found to be at least 3 orders of magnitude larger than that of natural and synthetic cellular materials of comparable density. Conductive bucky paper Is Included within the polymer interlayers. This allows the measurement of resistance variation as a function of applied stress, showing strong correlation with the observed strain localization In compression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A methodology for evaluating the reactivity of titanium with mould materials during casting has been developed. Microhardness profiles and analysis of oxygen contamination have provided an index for evaluation of the reactivity of titanium. Microhardness profile delineates two distinct regions, one of which is characterised by a low value of hardness which is invariant with distance. The reaction products are uniformly distributed in the metal in this region. The second is characterised by a sharp decrease in microhardness with distance from the metal-mould interface. It represents a diffusion zone for solutes that dissolve into titanium from the mould. The qualitative profiles for contaminants determined by scanning electron probe microanalyser and secondary ion mass spectroscopy in the as-cast titanium were found to be similar to that of microhardness, implying that microhardness can be considered as an index of the contamination resulting from metal-mould reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New compos~tiong radient solid electrolytes are developed which have application in high temperature solid state galvanic sensors and provide a new tool for thermodynamic measurements. The electrolyte consists oi a solid solution between two ionic conductors with a common mobile ion and spatial variation in composition of otber coxup nents. Incorporation of the composite electrolyte in sensors permits the use oi dissimilar gas electrodes. It is demonsuated, both experimentall y and theoretically, that the composition gradient of the relativeiy immobile species does not give rise to a diffusion potential.The emi of a cell is determined by the activity of the mobile species at the two eiectrodes. The thermodynamic properties of solid solutions can be measured using the gradient solid electrolyte. The experimental stuay is based on model systems A?(COj)x(S04)l-x (A=Na,K),where S \.aria across the electrolyte. The functionally gradient solid electrolytes used for activity measurements consist of pure carbonate at one ena and the solid solution under stuav at the other. The identical vaiues of activity, obtained h m t hree different modes of operation of the ceil. indicate unit transport number for the ddi metal ion in the graciient electrolyte. Tlle activities in the solid solutions exhibit moderate positive deviations from Raoult 's law.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a simplified theoretical formulation of the Fowler-Nordheim field emission (FNFE) under magnetic quantization and also in quantum wires of optoelectronic materials on the basis of a newly formulated electron dispersion law in the presence of strong electric field within the framework of k.p formalism taking InAs, InSb, GaAs, Hg(1-x)Cd(x)Te and In(1-x)Ga(x) As(y)P(1-y) lattice matched to InP as examples. The FNFE exhibits oscillations with inverse quantizing magnetic field and electron concentration due to SdH effect and increases with increasing electric field. For quantum wires the FNFE increases with increasing film thickness due to the existence van-Hove singularity and the magnitude of the quantum jumps are not of same height indicating the signature of the band structure of the material concerned. The appearance of the humps of the respective curves is due to the redistribution of the electrons among the quantized energy levels when the quantum numbers corresponding to the highest occupied level changes from one fixed value to the others. Although the field current varies in various manners with all the variables in all the limiting cases as evident from all the curves, the rates of variations are totally band-structure dependent. Under certain limiting conditions, all the results as derived in this paper get transformed in to well known Fowler-Nordheim formula. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycobacterium leprae is closely related to Mycobacterium tuberculosis, yet causes a very different illness. Detailed genomic comparison between these two species of mycobacteria reveals that the decaying M. leprae genome contains less than half of the M. tuberculosis functional genes. The reduction of genome size and accumulation of pseudogenes in the M. leprae genome is thought to result from multiple recombination events between related repetitive sequences, which provided the impetus to investigate the recombination-like activities of RecA protein. In this study, we have cloned, over-expressed and purified M. leprae RecA and compared its activities with that of M. tuberculosis RecA. Both proteins, despite being 91% identical at the amino acid level, exhibit strikingly different binding profiles for single-stranded DNA with varying GC contents, in the ability to catalyze the formation of D-loops and to promote DNA strand exchange. The kinetics and the extent of single-stranded DNA-dependent ATPase and coprotease activities were nearly equivalent between these two recombinases. However, the degree of inhibition exerted by a range of ATP:ADP ratios was greater on strand exchange promoted by M. leprae RecA compared to its M. tuberculosis counterpart. Taken together, our results provide insights into the mechanistic aspects of homologous recombination and coprotease activity promoted by M. lepare RecA, and further suggests that it differs from the M. tuberculosis counterpart. These results are consistent with an emerging concept of DNA-sequence influenced structural differences in RecA nucleoprotein filaments and how these differences reflect on the multiple activities associated with RecA protein. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Editors' note:Flexible, large-area display and sensor arrays are finding growing applications in multimedia and future smart homes. This article first analyzes and compares current flexible devices, then discusses the implementation, requirements, and testing of flexible sensor arrays.—Jiun-Lang Huang (National Taiwan University) and Kwang-Ting (Tim) Cheng (University of California, Santa Barbara)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a blue/green inorganic material, Ba(3)(P(1-x)-Mn(x)O(4))(2) (I) based on tetrahedral MnO(4)(3-):3d(2) chromophore. The solid solutions (I) which are sky-blue and turquoise-blue for x <= 0.25 and dark green for x >= 0-50, are readily synthesized in air from commonly available starting materials, stabilizing the MnO(4)(3-) chromophore in an isostructural phosphate host. We suggest that the covalency/ionicity of P-O/Mn-O bonds in the solid solutions tunes the crystal field strength around Mn(V) such that a blue colour results for materials with small values of x. The material could serve as a nontoxic blue/green inorganic pigment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beginning with the ‘frog-leg experiment’ by Galvani (1786), followed by the demonstrations of Volta pile by Volta (1792) and lead-acid accumulator by Plante´ (1859), several battery chemistries have been developed and realized commercially. The development of lithium-ion rechargeable battery in the early 1990s is a breakthrough in the science and technology of batteries. Owing to its high energy density and high operating voltage, the Li-ion battery has become the battery of choice for various portable applications such as note-book computers, cellular telephones, camcorders, etc. Huge efforts are underway in succeeding the development of large size batteries for electric vehicle applications. The origin of lithium-ion battery lies in the discovery that Li+-ions can reversibly be intercalated into/de-intercalated from the Van der Walls gap between graphene sheets of carbon materials at a potential close to the Li/Li+ electrode. By employing carbon as the negative electrode material in rechargeable lithium-ion batteries, the problems associated with metallic lithium in rechargeable lithium batteries have been mitigated. Complimentary investigations on intercalation compounds based on transition metals have resulted in establishing LiCoO2 as the promising cathode material. By employing carbon and LiCoO2, respectively, as the negative and positive electrodes in a non-aqueous lithium-salt electrolyte,a Li-ion cell with a voltage value of about 3.5 V has resulted.Subsequent to commercialization of Li-ion batteries, a number of research activities concerning various aspects of the battery components began in several laboratories across the globe. Regarding the positive electrode materials, research priorities have been to develop different kinds of active materials concerning various aspects such as safety, high capacity, low cost, high stability with long cycle-life, environmental compatibility,understanding relationships between crystallographic and electrochemical properties. The present review discusses the published literature on different positive electrode materials of Li-ion batteries, with a focus on the effect of particle size on electrochemical performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liposomes composed of cationic lipids have become very popular gene delivery vehicles. A great deal of research is being pursued to make efficient vectors by varying their molecular architecture. Cholesterol being ubiquitous component in most of the animal cell membranes is increasingly being used as a hydrophobic segment of synthetic cationic lipids. In this review we describe various cholesterol based cationic lipids and focus on the effect of modifying various structural segments like linker and the head group of the cationic lipids on gene transfection efficiency with a special emphasis on the importance of ether linkage between cholesteryl backbone and the polar head group. Interaction of cationic cholesteryl lipids with dipalmitylphosphatidycholine membranes is also discussed here. Apart from cholesterol being an attractive scaffold in the drug/gene delivery vehicles, certain cholesteryl derivatives have also been shown to be attractive room temperature liquid-crystalline materials.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The X-ray structures of new crystal forms of peptidyl-tRNA hydrolase from M.similar to tuberculosis reported here and the results of previous X-ray studies of the enzyme from different sources provide a picture of the functionally relevant plasticity of the protein molecule. The new X-ray results confirm the connection deduced previously between the closure of the lid at the peptide-binding site and the opening of the gate that separates the peptide-binding and tRNA-binding sites. The plasticity of the molecule indicated by X-ray structures is in general agreement with that deduced from the available solution NMR results. The correlation between the lid and the gate movements is not, however, observed in the NMR structure.