939 resultados para Functional Disability Scale
                                
Resumo:
The MAREDAT atlas covers 11 types of plankton, ranging in size from bacteria to jellyfish. Together, these plankton groups determine the health and productivity of the global ocean and play a vital role in the global carbon cycle. Working within a uniform and consistent spatial and depth grid (map) of the global ocean, the researchers compiled thousands and tens of thousands of data points to identify regions of plankton abundance and scarcity as well as areas of data abundance and scarcity. At many of the grid points, the MAREDAT team accomplished the difficult conversion from abundance (numbers of organisms) to biomass (carbon mass of organisms). The MAREDAT atlas provides an unprecedented global data set for ecological and biochemical analysis and modeling as well as a clear mandate for compiling additional existing data and for focusing future data gathering efforts on key groups in key areas of the ocean. The present data set presents depth integrated values of diazotrophs abundance and biomass, computed from a collection of source data sets.
                                
Resumo:
The MAREDAT atlas covers 11 types of plankton, ranging in size from bacteria to jellyfish. Together, these plankton groups determine the health and productivity of the global ocean and play a vital role in the global carbon cycle. Working within a uniform and consistent spatial and depth grid (map) of the global ocean, the researchers compiled thousands and tens of thousands of data points to identify regions of plankton abundance and scarcity as well as areas of data abundance and scarcity. At many of the grid points, the MAREDAT team accomplished the difficult conversion from abundance (numbers of organisms) to biomass (carbon mass of organisms). The MAREDAT atlas provides an unprecedented global data set for ecological and biochemical analysis and modeling as well as a clear mandate for compiling additional existing data and for focusing future data gathering efforts on key groups in key areas of the ocean. The present data set presents depth integrated values of diazotrophs nitrogen fixation rates, computed from a collection of source data sets.
                                
Resumo:
Walker and Karsten are two important decisions in disability discrimination law – not solely on the basis of their legal and practical repercussions for the United Kingdom (UK) and European Union (EU), respectively, but because they capture the very ideological spirit of domestic and European anti-discrimination legislation. The former directly relates to disability discrimination in the UK and the entire EU is feeling the brunt of the Court of Justice of the European Union’s decision in the latter. This article explores the impact of both these decisions and to what extent the obese or those suffering from a functional overlay are now protected from being discriminated against by the Framework Directive 2000/78 and the United Kingdom’s Equality Act 2010.
                                
Resumo:
Background: Esophageal adenocarcinoma (EA) is one of the fastest rising cancers in western countries. Barrett’s Esophagus (BE) is the premalignant precursor of EA. However, only a subset of BE patients develop EA, which complicates the clinical management in the absence of valid predictors. Genetic risk factors for BE and EA are incompletely understood. This study aimed to identify novel genetic risk factors for BE and EA.Methods: Within an international consortium of groups involved in the genetics of BE/EA, we performed the first meta-analysis of all genome-wide association studies (GWAS) available, involving 6,167 BE patients, 4,112 EA patients, and 17,159 representative controls, all of European ancestry, genotyped on Illumina high-density SNP-arrays, collected from four separate studies within North America, Europe, and Australia. Meta-analysis was conducted using the fixed-effects inverse variance-weighting approach. We used the standard genome-wide significant threshold of 5×10-8 for this study. We also conducted an association analysis following reweighting of loci using an approach that investigates annotation enrichment among the genome-wide significant loci. The entire GWAS-data set was also analyzed using bioinformatics approaches including functional annotation databases as well as gene-based and pathway-based methods in order to identify pathophysiologically relevant cellular pathways.Findings: We identified eight new associated risk loci for BE and EA, within or near the CFTR (rs17451754, P=4·8×10-10), MSRA (rs17749155, P=5·2×10-10), BLK (rs10108511, P=2·1×10-9), KHDRBS2 (rs62423175, P=3·0×10-9), TPPP/CEP72 (rs9918259, P=3·2×10-9), TMOD1 (rs7852462, P=1·5×10-8), SATB2 (rs139606545, P=2·0×10-8), and HTR3C/ABCC5 genes (rs9823696, P=1·6×10-8). A further novel risk locus at LPA (rs12207195, posteriori probability=0·925) was identified after re-weighting using significantly enriched annotations. This study thereby doubled the number of known risk loci. The strongest disease pathways identified (P<10-6) belong to muscle cell differentiation and to mesenchyme development/differentiation, which fit with current pathophysiological BE/EA concepts. To our knowledge, this study identified for the first time an EA-specific association (rs9823696, P=1·6×10-8) near HTR3C/ABCC5 which is independent of BE development (P=0·45).Interpretation: The identified disease loci and pathways reveal new insights into the etiology of BE and EA. Furthermore, the EA-specific association at HTR3C/ABCC5 may constitute a novel genetic marker for the prediction of transition from BE to EA. Mutations in CFTR, one of the new risk loci identified in this study, cause cystic fibrosis (CF), the most common recessive disorder in Europeans. Gastroesophageal reflux (GER) belongs to the phenotypic CF-spectrum and represents the main risk factor for BE/EA. Thus, the CFTR locus may trigger a common GER-mediated pathophysiology.
                                
Resumo:
Aims. The large and small-scale (pc) structure of the Galactic interstellar medium can be investigated by utilising spectra of early-type stellar probes of known distances in the same region of the sky. This paper determines the variation in line strength of Ca ii at 3933.661 Å as a function of probe separation for a large sample of stars, including a number of sightlines in the Magellanic Clouds.
Methods. FLAMES-GIRAFFE data taken with the Very Large Telescope towards early-type stars in 3 Galactic and 4 Magellanic open clusters in Ca ii are used to obtain the velocity, equivalent width, column density, and line width of interstellar Galactic calcium for a total of 657 stars, of which 443 are Magellanic Cloud sightlines. In each cluster there are between 43 and 111 stars observed. Additionally, FEROS and UVES Ca ii K and Na i D spectra of 21 Galactic and 154 Magellanic early-type stars are presented and combined with data from the literature to study the calcium column density - parallax relationship.
Results. For the four Magellanic clusters studied with FLAMES, the strength of the Galactic interstellar Ca ii K equivalent width on transverse scales from ∼0.05-9 pc is found to vary by factors of ∼1.8-3.0, corresponding to column density variations of ∼0.3-0.5 dex in the optically-thin approximation. Using FLAMES, FEROS, and UVES archive spectra, the minimum and maximum reduced equivalent widths for Milky Way gas are found to lie in the range ∼35-125 mÅ and ∼30-160 mÅ for Ca ii K and Na i D, respectively. The range is consistent with a previously published simple model of the interstellar medium consisting of spherical cloudlets of filling factor ∼0.3, although other geometries are not ruled out. Finally, the derived functional form for parallax (π) and Ca ii column density (NCaII) is found to be π(mas) = 1 / (2.39 × 10-13 × NCaII (cm-2) + 0.11). Our derived parallax is ∼25 per cent lower than predicted by Megier et al. (2009, A&A, 507, 833) at a distance of ∼100 pc and ∼15 percent lower at a distance of ∼200 pc, reflecting inhomogeneity in the Ca ii distribution in the different sightlines studied.
                                
Resumo:
Two-dimensional (2D) materials have generated great interest in the last few years as a new toolbox for electronics. This family of materials includes, among others, metallic graphene, semiconducting transition metal dichalcogenides (such as MoS2) and insulating Boron Nitride. These materials and their heterostructures offer excellent mechanical flexibility, optical transparency and favorable transport properties for realizing electronic, sensing and optical systems on arbitrary surfaces. In this work, we develop several etch stop layer technologies that allow the fabrication of complex 2D devices and present for the first time the large scale integration of graphene with molybdenum disulfide (MoS2) , both grown using the fully scalable CVD technique. Transistor devices and logic circuits with MoS2 channel and graphene as contacts and interconnects are constructed and show high performances. In addition, the graphene/MoS2 heterojunction contact has been systematically compared with MoS2-metal junctions experimentally and studied using density functional theory. The tunability of the graphene work function significantly improves the ohmic contact to MoS2. These high-performance large-scale devices and circuits based on 2D heterostructure pave the way for practical flexible transparent electronics in the future. The authors acknowledge financial support from the Office of Naval Research (ONR) Young Investigator Program, the ONR GATE MURI program, and the Army Research Laboratory. This research has made use of the MI.
                                
Resumo:
Green energy and Green technology are the most of the quoted terms in the context of modern science and technology. Technology which is close to nature is the necessity of the modern world which is haunted by global warming and climatic alterations. Proper utilization of solar energy is one of the goals of Green Energy Movement. The present thesis deals with the work carried out in the eld of nanotechnology and its possible use in various applications (employing natural dyes) like solar cells. Unlike arti cial dyes, the natural dyes are available, easy to prepare, low in cost, non-toxic, environmentally friendly and fully biodegradable. Looking to the 21st century, the nano/micro sciences will be a chief contributor to scienti c and technological developments. As nanotechnology progresses and complex nanosystems are fabricated, a growing impetus is being given to the development of multi-functional and size-dependent materials. The control of the morphology, from the nano to the micrometer scales, associated with the incorporation of several functionalities can yield entirely new smart hybrid materials. They are special class of materials which provide a new method for the improvement of the environmental stability of the material with interesting optical properties and opening a land of opportunities for applications in the eld of photonics. Zinc oxide (ZnO) is one such multipurpose material that has been explored for applications in sensing, environmental monitoring, and bio-medical systems and communications technology. Understanding the growth mechanism and tailoring their morphology is essential for the use of ZnO crystals as nano/micro electromechanical systems and also as building blocks of other nanosystems.
                                
Resumo:
Background: Acute lower extremity compartment syndrome (CS) is a condition that untreated causes irreversible nerve and muscle ischemia. Treatment by decompression fasciotomy without delay prevents permanent disability. The use of intracompartmental pressure (iCP) measurement in uncertain situations aids in diagnosis of severe leg pain. As an infrequent complication of lower extremity trauma, consequences of CS include chronic pain, nerve injury, and contractures. The purpose of this study was to observe the clinical and functional outcomes for patients with lower extremity CS after fasciotomy. Methods: Retrospective chart analysis for patients with a discharge diagnosis of CS was performed. Physical demographics, employment status, activity at time of injury, injury severity score, fracture types, pain scores, hours to fasciotomy, iCP, serum creatine kinase levels, wound treatment regimen, length of hospital stay, and discharge facility were collected. Lower extremity neurologic examination, pain scores, orthopedic complications, and employment status at 30 days and 12 months after discharge were noted. Results: One hundred twenty‑four patients were enrolled in this study. One hundred and eight patients were assessed at 12 months. Eighty‑one percent were male. Motorized vehicles caused 51% of injuries in males. Forty‑one percent of injuries were tibia fractures. Acute kidney injury occurred in 2.4%. Mean peak serum creatine kinase levels were 58,600 units/ml. Gauze dressing was used in 78.9% of nonfracture patients and negative pressure wound vacuum therapy in 78.2% of fracture patients. About 21.6% of patients with CS had prior surgery. Nearly 12.9% of patients required leg amputation. Around 81.8% of amputees were male. Sixty‑seven percent of amputees had associated vascular injuries. Foot numbness occurred in 20.5% of patients and drop foot palsy in 18.2%. Osteomyelitis developed in 10.2% of patients and fracture nonunion in 6.8%. About 14.7% of patients underwent further orthopedic surgery. At long‑term follow‑up, 10.2% of patients reported moderate lower extremity pain and 69.2% had returned to work. Conclusion: Escalation in leg pain and changes in sensation are the cardinal signs for CS rather than reliance on assessing for firm compartments and pressures. The severity of nerve injury worsens with the delay in performing fasciotomy. Standardized diagnostic protocols and wound treatment strategies will result in improved outcomes from this complication.
                                
Resumo:
Objective: Real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback (NF) uses feedback of the patient’s own brain activity to self-regulate brain networks which in turn could lead to a change in behaviour and clinical symptoms. The objective was to determine the effect of neurofeedback and motor training and motor training (MOT) alone on motor and non-motor functions in Parkinson’s disease (PD) in a 10-week small Phase I randomised controlled trial. Methods: 30 patients with PD (Hoehn & Yahr I-III) and no significant comorbidity took part in the trial with random allocation to two groups. Group 1 (NF: 15 patients) received rt-fMRI-NF with motor training. Group 2 (MOT: 15 patients) received motor training alone. The primary outcome measure was the Movement Disorder Society – Unified Parkinson’s Disease Rating Scale-Motor scale (MDS-UPDRS-MS), administered pre- and post-intervention ‘off-medication’. The secondary outcome measures were the ‘on-medication’ MDS-UPDRS, the Parkinson’s disease Questionnaire-39, and quantitative motor assessments after 4 and 10 weeks. Results: Patients in the NF group were able to upregulate activity in the supplementary motor area by using motor imagery. They improved by an average of 4.5 points on the MDS-UPDRS-MS in the ‘off-medication’ state (95% confidence interval: -2.5 to -6.6), whereas the MOT group improved only by 1.9 points (95% confidence interval +3.2 to -6.8). However, the improvement did not differ significantly between the groups. No adverse events were reported in either group. Interpretation: This Phase I study suggests that NF combined with motor training is safe and improves motor symptoms immediately after treatment, but larger trials are needed to explore its superiority over active control conditions. Clinical Trial website : Unique Identifier: NCT01867827 URL: https://clinicaltrials.gov/ct2/show/NCT01867827?term=NCT01867827&rank=1
Does the 6-minute walk test predicts functional capacity in a sample of elderly women? A pilot study
                                
Resumo:
Introduction: Functional capacity is the capacity to conduct daily activities in an independent way. It can be estimated with the 6-minutes’ walk test (6MWT) and other validated functional tests. Objectives: Verify associations between functional capacity measured with two different instruments (6MWT and Composite Physical Function (CPF) scale) and levels of physical activity and between those and characterization variables. Methods: This sample consisted of 30 apparently healthy elderly women from Loures municipality. Essentially they should be independent and community-dwelling. Characterization data were collected, containing characterization of physical activity levels and anthropometric data. Functional capacity was assessed with CPF scale and distance walked by the 6MWT. Results were analysed using a SPSS v21.0 through correlation tests. Results: The walked distance in 6MWT was positively associated with height (r = 0.406; p = 0.026), physical activity level (r = 0.594; p = 0.001) and functional capacity (r = 0.682; p = 0.000). For each point more obtained in CPF, the distance walked increases on average by 7.5 meters. Relatively to sedentary participants, being insufficiently active increases, on average, the distance walked in 85.8 meters; and being active increases, on average, the distance walked in 108.8 meters. No other associations were observed in our sample. Conclusion: Based on the collected sample, walked distance in 6MWT has a high correlation with results in CPF scale, so this test can be used to predict functional capacity. More attention should be taken to promote strategies to increase walking in older adults.
                                
Resumo:
Integral to achieving the SSF Guidelines goal of targeting the most vulnerable and marginalized persons and eliminating discrimination is the need to have adequate understanding of the power relations and intersectionalities that shape access to and control over marine and other resources according to gender, age, race, ethnicity, labour and migratory status, disability, geographic location and other characteristics relevant in each national contexts. This monograph identifies and explores the key social relations and dynamics in the SSF fisheries sector in South Africa impacting the implementation of the SSF Guidelines. The monograph will be useful for researchers, scientists, fishworker organizations, environmentalists and anyone interested in the protection of marine biodiversity and the promotion of sustainable fisheries management.
                                
Resumo:
Background and Purpose - Loss of motor function is common after stroke and leads to significant chronic disability. Stem cells are capable of self-renewal and of differentiating into multiple cell types, including neurones, glia, and vascular cells. We assessed the safety of granulocyte-colony-stimulating factor (G-CSF) after stroke and its effect on circulating CD34 stem cells. Methods - We performed a 2-center, dose-escalation, double-blind, randomized, placebo-controlled pilot trial (ISRCTN 16784092) of G-CSF (6 blocks of 1 to 10 g/kg SC, 1 or 5 daily doses) in 36 patients with recent ischemic stroke. Circulating CD34 stem cells were measured by flow cytometry; blood counts and measures of safety and functional outcome were also monitored. All measures were made blinded to treatment. Results - Thirty-six patients, whose mean SD age was 768 years and of whom 50% were male, were recruited. G-CSF (5 days of 10 g/kg) increased CD34 count in a dose-dependent manner, from 2.5 to 37.7 at day 5 (area under curve, P0.005). A dose-dependent rise in white cell count (P0.001) was also seen. There was no difference between treatment groups in the number of patients with serious adverse events: G-CSF, 7/24 (29%) versus placebo 3/12 (25%), or in their dependence (modified Rankin Scale, median 4, interquartile range, 3 to 5) at 90 days. Conclusions - ”G-CSF is effective at mobilizing bone marrow CD34 stem cells in patients with recent ischemic stroke. Administration is feasible and appears to be safe and well tolerated. The fate of mobilized cells and their effect on functional outcome remain to be determined. (Stroke. 2006;37:2979-2983.)
                                
Resumo:
This dissertation examines how social insurance, family support and work capacity enhance individuals' economic well-being following significant health and income shocks. I first examine the extent to which the liquidity-enhancing effects of Worker's Compensation (WC) benefits outweigh the moral hazard costs. Analyzing administrative data from Oregon, I estimate a hazard model exploiting variation in the timing and size of a retroactive lump-sum WC payment to decompose the elasticity of claim duration with respect to benefits into the elasticity with respect to an increase in cash on hand, and a decrease in the opportunity cost of missing work. I find that the liquidity effect accounts for 60 to 65 percent of the increase in claim duration among lower-wage workers, but less than half of the increase for higher earners. Using the framework from Chetty (2008), I conclude that the insurance value of WC exceeds the distortionary cost, and increasing the benefit level could increase social welfare. Next, I investigate how government-provided disability insurance (DI) interacts with private transfers to disabled individuals from their grown children. Using the Health and Retirement Study, I estimate a fixed effects, difference in differences regression to compare transfers between DI recipients and two control groups: rejected applicants and a reweighted sample of disabled non-applicants. I find that DI reduces the probability of receiving a transfer by no more than 3 percentage points, or 10 percent. Additional analysis reveals that DI could increase the probability of receiving a transfer in cases where children had limited prior information about the disability, suggesting that DI could send a welfare-improving information signal. Finally, Zachary Morris and I examine how a functional assessment could complement medical evaluations in determining eligibility for disability benefits and in targeting return to work interventions. We analyze claimants' self-reported functional capacity in a survey of current DI beneficiaries to estimate the share of disability claimants able to do work-related activity. We estimate that 13 percent of current DI beneficiaries are capable of work-related activity. Furthermore, other characteristics of these higher-functioning beneficiaries are positively correlated with employment, making them an appropriate target for return to work interventions.
                                
Resumo:
An initial laboratory-scale evaluation of separation characteristics of membranes with nominal molecular weight cut-offs (NMWCO) ranging from 30 kD down to 0.5 kD indicated effective separation of betalains in the 0.5 kD region. Subsequent pilot-level trials using 1 kD, loose reverse osmosis (LRO) and reverse osmosis (RO) spiral-wound membranes showed LRO membrane to be very efficient with up to 96% salt and 47% other dissolved solids removed while retaining majority of the pigment (∼98%) in the betalain rich extract (BRE). The total betalain content in the BRE increased up to 46%, the highest recovery reported so far at pilot scale level. Interestingly, more than 95% of the nitrates were removed from the BRE after the three diafiltrations. These studies indicate that membrane technology is the most efficient technique to produce BRE with highly reduced amounts of salts and nitrate content.
                                
Resumo:
Monitoring gonadmaturation for protandrous and functional hermaphrodite species such as the giant clamTridacna maxima is difficult due to the juxtaposition and relative proportion ofmale and female tissues in the gonad [gonadal sex ratio (GSR)]. Here, the relevance of the widely used gonadosomatic index (GSI) as proxy of giant clam gonad maturation is tested with a large dataset (n = 265). Gonadosomatic index is compared with other indices, namely the proportion of the male part harboring spermatozoids, the proportion of empty oocyte follicles, the mean oocyte diameter, and the oocyte elongation. At gonad scale, high index variability highlighted partial spawning. At individual scale, male and female maturation proxies were contrasted, showing either asynchronous emissions of male and female gametes or contrasted spermatogenesis and oogenesis duration. The GSI was mostly driven by the number and diameter of oocytes and therefore it is recommended here as primary proxy for female maturity. Except for the oocyte elongation, all indices were affected by the GSR, which ruled out drawing conclusions at population scale. These results highlight the need for maturation stage proxies that are optimized for functional hermaphrodite species.
 
                    