920 resultados para Fourier coefficients vector
Resumo:
The symmetry energy coefficients, incompressibility, and single-particle and isovector potentials of clusterized dilute nuclear matter are calculated at different temperatures employing the S-matrix approach to the evaluation of the equation of state. Calculations have been extended to understand the aforesaid properties of homogeneous and clusterized supernova matter in the subnuclear density region. A comparison of the results in the S-matrix and mean-field approach reveals some subtle differences in the density and temperature region we explore.
Resumo:
UNLABELLED: NYVAC, a highly attenuated, replication-restricted poxvirus, is a safe and immunogenic vaccine vector. Deletion of immune evasion genes from the poxvirus genome is an attractive strategy for improving the immunogenic properties of poxviruses. Using systems biology approaches, we describe herein the enhanced immunological profile of NYVAC vectors expressing the HIV-1 clade C env, gag, pol, and nef genes (NYVAC-C) with single or double deletions of genes encoding type I (ΔB19R) or type II (ΔB8R) interferon (IFN)-binding proteins. Transcriptomic analyses of human monocytes infected with NYVAC-C, NYVAC-C with the B19R deletion (NYVAC-C-ΔB19R), or NYVAC-C with B8R and B19R deletions (NYVAC-C-ΔB8RB19R) revealed a concerted upregulation of innate immune pathways (IFN-stimulated genes [ISGs]) of increasing magnitude with NYVAC-C-ΔB19R and NYVAC-C-ΔB8RB19R than with NYVAC-C. Deletion of B8R and B19R resulted in an enhanced activation of IRF3, IRF7, and STAT1 and the robust production of type I IFNs and of ISGs, whose expression was inhibited by anti-type I IFN antibodies. Interestingly, NYVAC-C-ΔB8RB19R induced the production of much higher levels of proinflammatory cytokines (tumor necrosis factor [TNF], interleukin-6 [IL-6], and IL-8) than NYVAC-C or NYVAC-C-ΔB19R as well as a strong inflammasome response (caspase-1 and IL-1β) in infected monocytes. Top network analyses showed that this broad response mediated by the deletion of B8R and B19R was organized around two upregulated gene expression nodes (TNF and IRF7). Consistent with these findings, monocytes infected with NYVAC-C-ΔB8RB19R induced a stronger type I IFN-dependent and IL-1-dependent allogeneic CD4(+) T cell response than monocytes infected with NYVAC-C or NYVAC-C-ΔB19R. Dual deletion of type I and type II IFN immune evasion genes in NYVAC markedly enhanced its immunogenic properties via its induction of the increased expression of type I IFNs and IL-1β and make it an attractive candidate HIV vaccine vector. IMPORTANCE: NYVAC is a replication-deficient poxvirus developed as a vaccine vector against HIV. NYVAC expresses several genes known to impair the host immune defenses by interfering with innate immune receptors, cytokines, or interferons. Given the crucial role played by interferons against viruses, we postulated that targeting the type I and type II decoy receptors used by poxvirus to subvert the host innate immune response would be an attractive approach to improve the immunogenicity of NYVAC vectors. Using systems biology approaches, we report that deletion of type I and type II IFN immune evasion genes in NYVAC poxvirus resulted in the robust expression of type I IFNs and interferon-stimulated genes (ISGs), a strong activation of the inflammasome, and upregulated expression of IL-1β and proinflammatory cytokines. Dual deletion of type I and type II IFN immune evasion genes in NYVAC poxvirus improves its immunogenic profile and makes it an attractive candidate HIV vaccine vector.
Resumo:
We study the interaction of vector mesons with the octet of stable baryons in the framework of the local hidden gauge formalism using a coupled channels unitary approach. We examine the scattering amplitudes and their poles, which can be associated to known J P = 1/2- , 3/2- baryon resonances, in some cases, or give predictions in other ones. The formalism employed produces doublets of degenerate J P = 1/2- , 3/2- states, a pattern which is observed experimentally in several cases. The findings of this work should also be useful to guide present experimental programs searching for new resonances, in particular in the strange sector where the current information is very poor.
Resumo:
Laboratory and field experiments have demonstrated in many cases that malaria vectors do not feed randomly, but show important preferences either for infected or non-infected hosts. These preferences are likely in part shaped by the costs imposed by the parasites on both their vertebrate and dipteran hosts. However, the effect of changes in vector behaviour on actual parasite transmission remains a debated issue. We used the natural associations between a malaria-like parasite Polychromophilus murinus, the bat fly Nycteribia kolenatii and a vertebrate host the Daubenton's bat Myotis daubentonii to test the vector's feeding preference based on the host's infection status using two different approaches: 1) controlled behavioural assays in the laboratory where bat flies could choose between a pair of hosts; 2) natural bat fly abundance data from wild-caught bats, serving as an approximation of realised feeding preference of the bat flies. Hosts with the fewest infectious stages of the parasite were most attractive to the bat flies that did switch in the behavioural assay. In line with the hypothesis of costs imposed by parasites on their vectors, bat flies carrying parasites had higher mortality. However, in wild populations, bat flies were found feeding more based on the bat's body condition, rather than its infection level. Though the absolute frequency of host switches performed by the bat flies during the assays was low, in the context of potential parasite transmission they were extremely high. The decreased survival of infected bat flies suggests that the preference for less infected hosts is an adaptive trait. Nonetheless, other ecological processes ultimately determine the vector's biting rate and thus transmission. Inherent vector preferences therefore play only a marginal role in parasite transmission in the field. The ecological processes rather than preferences per se need to be identified for successful epidemiological predictions.
Resumo:
Ultrasound image reconstruction from the echoes received by an ultrasound probe after the transmission of diverging waves is an active area of research because of its capacity to insonify at ultra-high frame rate with large regions of interest using small phased arrays as the ones used in echocardiography. Current state-of-the-art techniques are based on the emission of diverging waves and the use of delay and sum strategies applied on the received signals to reconstruct the desired image (DW/DAS). Recently, we have introduced the concept of Ultrasound Fourier Slice Imaging (UFSI) theory for the reconstruction of ultrafast imaging for linear acquisition. In this study, we extend this theory to sectorial acquisition thanks to the introduction of an explicit and invertible spatial transform. Starting from a diverging wave, we show that the direct use of UFSI theory along with the application of the proposed spatial transform allows reconstructing the insonified medium in the conventional Cartesian space. Simulations and experiments reveal the capacity of this new approach in obtaining competitive quality of ultrafast imaging when compared with the current reference method.
Resumo:
Ticks transmit more pathogens to humans and animals than any other arthropod. We describe the 2.1 Gbp nuclear genome of the tick, Ixodes scapularis (Say), which vectors pathogens that cause Lyme disease, human granulocytic anaplasmosis, babesiosis and other diseases. The large genome reflects accumulation of repetitive DNA, new lineages of retro-transposons, and gene architecture patterns resembling ancient metazoans rather than pancrustaceans. Annotation of scaffolds representing ∼57% of the genome, reveals 20,486 protein-coding genes and expansions of gene families associated with tick-host interactions. We report insights from genome analyses into parasitic processes unique to ticks, including host 'questing', prolonged feeding, cuticle synthesis, blood meal concentration, novel methods of haemoglobin digestion, haem detoxification, vitellogenesis and prolonged off-host survival. We identify proteins associated with the agent of human granulocytic anaplasmosis, an emerging disease, and the encephalitis-causing Langat virus, and a population structure correlated to life-history traits and transmission of the Lyme disease agent.
Resumo:
Los análisis de Fourier permiten caracterizar el contorno del diente y obtener una serie de parámetros para un posterior análisis multivariante. Sin embargo, la gran complejidad que presentan algunas formas obliga a determinar el error de medición intrínseco que se produce. El objetivo de este trabajo es aplicar y validar los análisis de Fourier en el estudio de la forma dental del segundo molar inferior (M2) de cuatro especies de primates Hominoidea para explorar la variabilidad morfométrica interespecífica, así como determinar el error de medición a un nivel intra e interobservador. El contorno de la superficie oclusal del diente fue definido digitalmente y con las funciones derivadas del análisis de Fourier se realizaron Análisis Discriminantes y Test de Mantel (correlaciones de Pearson) para determinar las diferencias de forma a partir de las mediciones tomadas. Los resultados indican que el análisis de Fourier muestra la variabilidad de forma en dientes molares en especies de primates Hominoidea. Adicionalmente, los altos niveles de correlación a nivel intra (r>0,9) como interobservador (r>0,7) sugieren que la descripción morfométrica del diente a partir de métodos de Fourier realizados por diferentes observadores puede ser agrupada para posteriores análisis.
Resumo:
Los análisis de Fourier permiten caracterizar el contorno del diente a partir de un número determinado de puntos y extraer una serie de parámetros para un posterior análisis multivariante. No obstante, la gran complejidad que presentan algunas conformaciones, obliga a comprobar cuántos puntos son necesarios para una correcta representación de ésta. El objetivo de este trabajo es aplicar y validar los análisis de Fourier (Polar y Elíptico) en el estudio de la forma dental a partir de diferentes puntos de contorno y explorar la variabilidad morfométrica en diferentes géneros. Se obtuvieron fotografías digitales de la superfi cie oclusal en segundos molares inferiores (M2s) de 4 especies de Primates (Hylobates moloch, Gorilla beringei graueri, Pongo pygmaeus pygmaeus y Pan troglodytes schweirfurthii) y se defi nió su contorno con 30, 40, 60, 80, 100 y 120 puntos y su representación formal a 10 armónicos. El análisis de la variabilidad morfométrica se realizó mediante la aplicación de Análisis Discriminantes y un NP-MANOVA a partir de matrices de distancias para determinar la variabilidad y porcentajes de clasifi cacióncorrecta, a nivel metodológico y taxonómico. Los resultados indicaron que los análisis de forma con series de Fourier permiten analizar la variabilidad morfométrica de M2s en géneros de Hominoidea, con independencia del número de puntos de contorno (30 a 120). Los porcentajes de clasifi cación son más variables e inferiores con el uso de la serie Polar (≈60-90) que con la Elíptica (75-100%). Un número entre 60-100 puntos de contorno mediante el método elíptico garantiza una descripción correcta de la forma del diente.
Resumo:
We study the relationship between stable sampling sequences for bandlimited functions in $L^p(\R^n)$ and the Fourier multipliers in $L^p$. In the case that the sequence is a lattice and the spectrum is a fundamental domain for the lattice the connection is complete. In the case of irregular sequences there is still a partial relationship.
Resumo:
In this paper the authors propose a new closed contour descriptor that could be seen as a Feature Extractor of closed contours based on the Discrete Hartley Transform (DHT), its main characteristic is that uses only half of the coefficients required by Elliptical Fourier Descriptors (EFD) to obtain a contour approximation with similar error measure. The proposed closed contour descriptor provides an excellent capability of information compression useful for a great number of AI applications. Moreover it can provide scale, position and rotation invariance, and last but not least it has the advantage that both the parameterization and the reconstructed shape from the compressed set can be computed very efficiently by the fast Discrete Hartley Transform (DHT) algorithm. This Feature Extractor could be useful when the application claims for reversible features and when the user needs and easy measure of the quality for a given level of compression, scalable from low to very high quality.
Resumo:
In this paper we describe three computer programs in Basic language about the Fourier transform (FFT) which are available in the Internet site http://artemis.ffclrp.usp.br/SoftwareE.htm (in English) or http://artemis.ffclrp.usp.br/softwareP.htm (in Portuguese) since October 1998. Those are addresses to the Web Page of our Laboratory of Organic Synthesis. The programs can be downloaded and used by anyone who is interested on the subject. The texts, menus and captions in the programs are written in English.
Resumo:
Instrumental data always present some noise. The analytical data information and instrumental noise generally has different frequencies. Thus is possible to remove the noise using a digital filter based on Fourier transform and inverse Fourier transform. This procedure enhance the signal/noise ratio and consecutively increase the detection limits on instrumental analysis. The basic principle of Fourier transform filter with modifications implemented to improve its performance is presented. A numerical example, as well as a real voltammetric example are showed to demonstrate the Fourier transform filter implementation. The programs to perform the Fourier transform filter, in Matlab and Visual Basic languages, are included as appendices
Resumo:
This article shows the usefulness of a website to explain the concepts, operational events, vacuum system, applications and an experimental sequence of the Fourier Transform Ion Ciclotron Resonance Mass Spectrometry technique (http://143.107.46.113/icr/icrj.html).
Estudo comparativo sobre filtragem de sinais instrumentais usando transformadas de Fourier e Wavelet
Resumo:
A comparative study of the Fourier (FT) and the wavelet transforms (WT) for instrumental signal denoising is presented. The basic principles of wavelet theory are described in a succinct and simplified manner. For illustration, FT and WT are used to filter UV-VIS and plasma emission spectra using MATLAB software for computation. Results show that FT and WT filters are comparable when the signal does not display sharp peaks (UV-VIS spectra), but the WT yields a better filtering when the filling factor of the signal is small (plasma spectra), since it causes low peak distortion.
Resumo:
Coherent anti-Stokes Raman scattering (CARS) microscopy is rapidly developing into a unique microscopic tool in biophysics, biology and the material sciences. The nonlinear nature of CARS spectroscopy complicates the analysis of the received spectra. There were developed mathematical methods for signal processing and for calculations spectra. Fourier self-deconvolution is a special high pass FFT filter which synthetically narrows the effective trace bandwidth features. As Fourier self-deconvolution can effectively reduce the noise, which may be at a higher spatial frequency than the peaks, without losing peak resolution. The idea of the work is to experiment the possibility of using wavelet decomposition in spectroscopic for background and noise removal, and Fourier transformation for linenarrowing.