959 resultados para Found footage film
Resumo:
Experimental investigation of functionally graded calcium phosphate-based bio-active films on Ti-6A1-4V orthopaedic alloy prepared in an RF magnetron sputtering plasma reactor is reported. The technique involves concurrent sputtering of Hydroxyapatite (HA) and Ti targets, which results in remarkably enhanced adhesion of the film to the substrate and stability of the interface. The films have been characterized using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The XPS data show that the films are composed of O, Ca, P and Ti, and reveal the formation of O=P groups and hybridization of O-Ca-P. The XRD pattern shows that the Ca-P thin films are of crystalline calcium oxide phosphate (4CaO·P2O5) with preferred orientation varying with processing parameters. High-resolution optical emission spectra show that the emission of CaO is dominant. The CaO, PO and CaPO species are strongly influenced by deposition conditions. The introduction of Ti element during deposition provides a stable interface between bio-inert substrates Ti-6A1-4V and bioactive HA coating. In-vitro cell culturing tests suggest excellent biocompatibility of the Ca-P-Ti films.
Resumo:
This paper reports on the efficient deposition of hydrogenated diamond-like carbon (DLC) film in a plasma reactor that features both the capacitively and inductively coupled operation regimes. The hydrogenated DLC films have been prepared on silicon wafers using a low-frequency (500 kHz) inductively coupled plasma (ICP) chemical vapor deposition (CVD) system. At low RF powers, the system operates as an asymmetric capacitively coupled plasma source, and the film deposition process is undertaken in the electrostatic (E) discharge regime. Above the mode transition threshold, the high-density inductively coupled plasma is produced in the electromagnetic (H) discharge regime. It has been shown that the deposition rate and hardness of the DLC film are much higher in the H-mode deposition regime. For a 2.66-Pa H-mode CH4 + Ar gas mixture discharge, the deposited DLC film exhibits a mechanical hardness of 18 GPa, Young's modulus of 170 GPa, and compressive stress of 1.3 GPa.
Resumo:
The results of numerical simulation of the equilibrium parameters of a low pressure nanopowder-generating discharge in silane for the plasma enhanced chemical vapor deposition (PECVD) of nanostructured silicon-based films are presented. It is shown that a low electron temperature and a low density of negative SiH3 - ions are favorable for the PECVD process. This opens a possibility to predict the main parameters of the reactive plasma and plasma-nucleated nanoparticles, and hence, to control the quality of silicon nanofilms.
Resumo:
The results of theoretical investigations of two-channel waveguide modulator based on Surface Wave (SW) propagation are presented. The structure studied consists of two n-type semiconductor waveguide channels separated from each other by a dielectric gap and coated by a metal. The SW propagates at the semiconductor-metal interface across an external magnetic field which is parallel to the interface. An external dc voltage is applied to the metal surface of one channel to provide a small phase shift between two propagating modes. In a coupled mode approximation, two possible regimes of operation of the structure, namely as a directional coupler and as an electro-optical modulator, are considered. Our results suggest new applications in millimeter and submillimeter wave solid-state electronics and integrated optics.
Resumo:
The surface enhanced Raman scattering effect has shown immense potential for detecting trace amounts of explosive vapor molecules. To date, efforts to produce a commercially available, reliable SERS sensor have been impeded by an inability to separate the electromagnetic enhancement produced by the metallic nanostructure from other signal enhancing effects. Here, we show a new Raman sensor that uses surface acoustic waves (SAWs) to produce controllable surface structures on gold films deposited on LiNbO3 substrates that modulate the Raman signal of a target compound (thiophenol) adsorbed on the films. We demonstrate that this sensor can dynamically control the Raman signal simply by changing the SAW’s amplitude, allowing the Raman signal enhancement factor to be directly measured with no variation in the concentration of the target compound. The physically adsorbed molecules can be removed from the sensor without physical cleaning or damage, making it possible to reuse it for real-time Raman detection.
Resumo:
We report on charge transport and density of trap states (trap DOS) in ambipolar diketopyrrolopyrrole-benzothiadiazole copolymer thin-film transistors. This semiconductor possesses high electron and hole field-effect mobilities of up to 0.6 cm 2/V-s. Temperature and gate-bias dependent field-effect mobility measurements are employed to extract the activation energies and trap DOS to understand its unique high mobility balanced ambipolar charge transport properties. The symmetry between the electron and hole transport characteristics, parameters and activation energies is remarkable. We believe that our work is the first charge transport study of an ambipolar organic/polymer based field-effect transistor with room temperature mobility higher than 0.1 cm 2/V-s in both electrons and holes.
Resumo:
In this letter, the performance characteristics of top-gate and dual-gate thin-film transistors (TFTs) with active semiconductor layers consisting of diketopyrrolopyrrole-naphthalene copolymer are described. Optimized top-gate TFTs possess mobilities of up to 1 cm 2 /V s with low contact resistance and reduced hysteresis in air. Dual-gate devices possess higher drive currents as well as improved subthreshold and above threshold characteristics compared to single-gate devices. We also describe the reasons that dual-gate devices result in improved performance. The good stability of this polymer combined with their promising electrical properties make this material a very promising semiconductor for printable electronics.
Resumo:
In this letter, the velocity distributions of charge carriers in high-mobility polymer thin-film transistors (TFTs) with a diketopyrrolopyrrole- naphthalene copolymer (PDPP-TNT) semiconductor active layer are reported. The velocity distributions are found to be strongly dependent on measurement temperatures as well as annealing conditions. Considerable inhomogeneity is evident at low measurement temperatures and for low annealing temperatures. Such transient transport measurements can provide additional information about charge carrier transport in TFTs which are unavailable using steady-state transport measurements.
Resumo:
We report charge-carrier velocity distributions in high-mobility polymer thin-film transistors (PTFTs) employing a dual-gate configuration. Our time-domain measurements of dual-gate PTFTs indicate higher effective mobility as well as fewer low-velocity carriers than in single-gate operation. Such nonquasi-static (NQS) measurements support and clarify the previously reported results of improved device performance in dual-gate devices by various groups. We believe that this letter demonstrates the utility of NQS measurements in studying charge-carrier transport in dual-gate thin-film transistors.
Resumo:
In this paper, we report on the device physics and charge transport characteristics of high-mobility dual-gated polymer thin-film transistors with active semiconductor layers consisting of thiophene flanked DPP with thienylene-vinylene-thienylene (PDPP-TVT) alternating copolymers. Room temperature mobilities in these devices are high and can exceed 2 cm2 V-1 s-1. Steady-state and non-quasi-static measurements have been performed to extract key transport parameters and velocity distributions of charge carriers in this copolymer. Charge transport in this polymer semiconductor can be explained using a Multiple-Trap-and-Release or Monroe-type model. We also compare the activation energy vs. field-effect mobility in a few important polymer semiconductors to gain a better understanding of transport of DPP systems and make appropriate comparisons.
Resumo:
Diketopyrrolopyrrole (DPP)-based organic semiconductors EH-DPP-TFP and EH-DPP-TFPV with branched ethyl-hexyl solubilizing alkyl chains and end capped with trifluoromethyl phenyl groups were designed and synthesized via Suzuki coupling. These compounds show intense absorptions up to 700 nm, and thin film-forming characteristics that sensitively depend on the solvent and coating conditions. Both materials have been used as electron donors in bulk heterojunction and bilayer organic photovoltaic (OPV) devices with fullerenes as acceptors and their performance has been studied in detail. The best power conversion efficiency of 3.3% under AM1.5G illumination (100 mW cm -2) was achieved for bilayer solar cells when EH-DPP-TFPV was used with C 60, after a thermal annealing step to induce dye aggregation and interdiffusion of C 60 with the donor material. To date, this is one of the highest efficiencies reported for simple bilayer OPV devices.
Resumo:
A copolymer comprising 1,4-diketopyrrolo[3,4-c]pyrrole (DPP) and thieno[3,2-b]thiophene moieties, PDBT-co-TT, shows high hole mobility of up to 0.94 cm2 V-1 s-1 in organic thin-film transistors. The strong intermolecular interactions originated from π-π stacking and donor-acceptor interaction lead to the formation of interconnected polymer networks having an ordered lamellar structure, which have established highly efficient pathways for charge carrier transport.
Resumo:
In recent years, the electron-accepting diketopyrrolopyrrole (DPP) moiety has been receiving considerable attention for constructing donor-acceptor (D-A) type organic semiconductors for a variety of applications, particularly for organic thin film transistors (OTFTs) and organic photovoltaics (OPVs). Through association of the DPP unit with appropriate electron donating building blocks, the resulting D-A molecules interact strongly in the solid state through intermolecular D-A and π-π interactions, leading to highly ordered structures at the molecular and microscopic levels. The closely packed molecules and crystalline domains are beneficial for intermolecular and interdomain (or intergranular) charge transport. Furthermore, the energy levels can be readily adjusted, affording p-type, n-type, or ambipolar organic semiconductors with highly efficient charge transport properties in OTFTs. In the past few years, a number of DPP-based small molecular and polymeric semiconductors have been reported to show mobility close to or greater than 1 cm2 V -1 s-1. DPP-based polymer semiconductors have achieved record high mobility values for p-type (hole mobility: 10.5 cm2 V-1 s-1), n-type (electron mobility: 3 cm2 V-1 s-1), and ambipolar (hole/electron mobilities: 1.18/1.86 cm2 V-1 s-1) OTFTs among the known polymer semiconductors. Many DPP-based organic semiconductors have favourable energy levels and band gaps along with high hole mobility, which enable them as promising donor materials for OPVs. Power conversion efficiencies (PCE) of up to 6.05% were achieved for OPVs using DPP-based polymers, demonstrating their potential usefulness for the organic solar cell technology. This article provides an overview of the recent exciting progress made in DPP-containing polymers and small molecules that have shown high charge carrier mobility, around 0.1 cm2 V-1 s-1 or greater. It focuses on the structural design, optoelectronic properties, molecular organization, morphology, as well as performances in OTFTs and OPVs of these high mobility DPP-based materials.
Resumo:
A new diketopyrrolopyrrole (DPP)-containing donor-acceptor polymer, poly(2,5-bis(2-octyldodecyl)-3,6-di(furan-2-yl)-2,5-dihydro-pyrrolo[3,4-c] pyrrole-1,4-dione-co-thieno[3,2-b]thiophene) (PDBF-co-TT), is synthesized and studied as a semiconductor in organic thin film transistors (OTFTs) and organic photovoltaics (OPVs). High hole mobility of up to 0.53 cm 2 V -1 s -1 in bottom-gate, top-contact OTFT devices is achieved owing to the ordered polymer chain packing and favoured chain orientation, strong intermolecular interactions, as well as uniform film morphology of PDBF-co-TT. The optimum band gap of 1.39 eV and high hole mobility make this polymer a promising donor semiconductor for the solar cell application. When paired with a fullerene acceptor, PC 71BM, the resulting OPV devices show a high power conversion efficiency of up to 4.38% under simulated standard AM1.5 solar illumination.
Resumo:
A donor-acceptor polymer semiconductor, PDQT, comprising diketopyrrolopyrrole (DPP) and β-unsubstituted quaterthiophene (QT) for organic thin film transistors (OTFTs) is reported. This polymer forms ordered layer-by-layer lamellar packing with an edge-on orientation in thin films even without thermal annealing. The strong intermolecular interactions arising from the fused aromatic DPP moiety and the DPP-QT donor-acceptor interaction facilitate the spontaneous self-assembly of the polymer chains into close proximity and form a large π-π overlap, which are favorable for intermolecular charge hopping. The well-interconnected crystalline grains form efficient intergranular charge transport pathways. The desirable chemical, electronic, and morphological structures of PDQT bring about high hole mobility of up to 0.97 cm2/(V·s) in OTFTs with polymer thin films annealed at a mild temperature of 100 °C and similarly high mobility of 0.89 cm2/(V·s) for polymer thin films even without thermal annealing.