999 resultados para Forest regeneration
Resumo:
Trophic relationships in fish communities are affected by the availability of resources, which in turn is affected by spatial and temporal variations throughout the year. The aims of this study were to characterize the diet of A. tetramerus in a streamlet in the north of Brazil and compare its composition in different hydrological seasons (wet and dry seasons). Collections were performed every two months from October 2011 to September 2012 with the aid of seine nets, hand net and fishing traps in the streamlet located in the Machado River drainage basin in the Rondônia state. Most of the specimens collected were quite small (< 40 mm) and had empty stomachs. Our results showed that A. tetramerus feeds on a wide variety of items of plant origin, such as algae, seeds and leaves, as well as items of animal origin, including bryozoans, crustaceans, fish scales, terrestrial insects and detritus. The data also indicated higher consumption of aquatic insects than other food items, suggesting a primarily insect-based diet. Items of plant and allochthonous origin were consumed more in the wet season than in the dry season, but there were no seasonal differences in the consumption of animal and autochthonous items.
Resumo:
ABSTRACTThe Amazon várzeas are an important component of the Amazon biome, but anthropic and climatic impacts have been leading to forest loss and interruption of essential ecosystem functions and services. The objectives of this study were to evaluate the capability of the Landsat-based Detection of Trends in Disturbance and Recovery (LandTrendr) algorithm to characterize changes in várzeaforest cover in the Lower Amazon, and to analyze the potential of spectral and temporal attributes to classify forest loss as either natural or anthropogenic. We used a time series of 37 Landsat TM and ETM+ images acquired between 1984 and 2009. We used the LandTrendr algorithm to detect forest cover change and the attributes of "start year", "magnitude", and "duration" of the changes, as well as "NDVI at the end of series". Detection was restricted to areas identified as having forest cover at the start and/or end of the time series. We used the Support Vector Machine (SVM) algorithm to classify the extracted attributes, differentiating between anthropogenic and natural forest loss. Detection reliability was consistently high for change events along the Amazon River channel, but variable for changes within the floodplain. Spectral-temporal trajectories faithfully represented the nature of changes in floodplain forest cover, corroborating field observations. We estimated anthropogenic forest losses to be larger (1.071 ha) than natural losses (884 ha), with a global classification accuracy of 94%. We conclude that the LandTrendr algorithm is a reliable tool for studies of forest dynamics throughout the floodplain.
Resumo:
Cartilage tissue is a complex nonlinear, viscoelastic, anisotropic, and multiphasic material with a very low coefficient of friction, which allows to withstand millions of cycles of joint loading over decades of wear. Upon damage, cartilage tissue has a low self-reparative capacity due to the lack of neural connections, vascularization, and a latent pool of stem/chondroprogenitor cells. Therefore, the healing of articular cartilage defects remains a significant clinical challenge, affecting millions of people worldwide. A plethora of biomaterials have been proposed to fabricate devices for cartilage regeneration, assuming a wide range of forms and structures, such as sponges, hydrogels, capsules, fibers, and microparticles. In common, the fabricated devices were designed taking in consideration that to fully achieve the regeneration of functional cartilage it is mandatory a well-orchestrated interplay of biomechanical properties, unique hierarchical structures, extracellular matrix (ECM), and bioactive factors. In fact, the main challenge in cartilage tissue engineering is to design an engineered device able to mimic the highly organized zonal architecture of articular cartilage, specifically its spatiomechanical properties and ECM composition, while inducing chondrogenesis, either by the proliferation of chondrocytes or by stimulating the chondrogenic differentiation of stem/chondro-progenitor cells. In this chapter we present the recent advances in the development of innovative and complex biomaterials that fulfill the required structural key elements for cartilage regeneration. In particular, multiphasic, multiscale, multilayered, and hierarchical strategies composed by single or multiple biomaterials combined in a welldefined structure will be addressed. Those strategies include biomimetic scaffolds mimicking the structure of articular cartilage or engineered scaffolds as models of research to fully understand the biological mechanisms that influence the regeneration of cartilage tissue.
Resumo:
The extracellular matrix (ECM) of tissues is an assembly of insoluble macromolecules that specifically interact with soluble bioactive molecules and regulate their distribution and availability to cells. Recapitulating this ability has been an important target in controlled growth factor delivery strategies for tissue regeneration and requires the design of multifunctional carriers. This review describes the integration of supramolecular interactions on the design of delivery strategies that encompass self-assembling and engineered affinity components to construct advanced biomimetic carriers for growth factor delivery. Several glycan- and peptide-based self-assemblies reported in the literature are highlighted and commented upon. These examples demonstrate how molecular design and chemistry are successfully employed to create versatile multifunctional molecules which self-assemble/disassemble in a precisely predicted manner, thus controlling compartmentalization, transport and delivery. Finally, we discuss whether recent advances in the design and preparation of supramolecular delivery systems have been sufficient to drive real translation towards a clinical impact.
Resumo:
Scaffolds are porous three-dimensional supports, designed to mimic the extracellular environment and remain temporarily integrated into the host tissue while stimulating, at the molecular level, specific cellular responses to each type of body tissues. The major goal of the research work entertained herein was to study the microstructure of scaffolds made from chitosan (Ch), blends of chitosan and sodium alginate (Ch/NaAlg), blends of chitosan, sodium alginate and calcium chloride (Ch/NaAlg/CaCl2) and blends of chitosan, sodium alginate and hydroxyapatite (Ch/NaAlg/HA). Scaffolds possessing ideal physicochemical properties facilitate cell proliferation and greatly increase the rate of recovery of a damaged organ tissue. Using CT three-dimensional images of the scaffolds, it was observed that all scaffolds had a porosity in the range 64%-92%, a radius of maximum pore occurrence in the range 95m-260m and a permeability in the range 1×10-10-18×10-10 m2. From the results obtained, the scaffolds based on Ch, Ch/NaAlg and Ch/NaAlg/CaCl2 would be most appropriate both for the growth of osteoid and for bone tissue regeneration, while the scaffold made with a blend of Ch/NaAlg/HA, by possessing larger pores size, might be used as a support for fibrovascular tissue.
Resumo:
Membrane-like scaffolds are suitable to induce regeneration in many and different anatomic sites, such as periodontal membrane, skin, liver and cardiac tissues. In some circumstances, the films should adapt to geometrical changes of the attached tissues, such as in cardiac or blood vessel tissue engineering applications. In this context, we developed stretchable two-dimensional multilayer constructs through the assembling of two natural-based polyelectrolytes, chitosan (CHT) and chondroitin sulphate (CS), using the layer-by-layer methodology. The morphology, topography and the transparency of the films were evaluated. The in- fluence of genipin, a natural-derived cross-linker agent, was also investigated in the control of the mechanical properties of the CHT/CS films. The water uptake ability can be tailored by changing the cross-linker concentration, which influenced the young modulus and ultimate tensile strength. The maximum extension tends to decrease with the increase of genipin concentration, compromising the elastic properties of CHT/CS films: nevertheless using lower cross-linker contents, the ultimate tensile stress is similar to the films not cross-linked but exhibiting a significant higher modulus. The in vitro biological assays showed better L929 cell adhesion and proliferation when using the crosslinked membranes and confirmed the non-cytotoxicity of the CHT/CS films. The developed free-standing biomimetic multilayer could be designed to fulfill specific therapeutic requirements by tuning properties such as swelling, mechanical and biological performances.
Resumo:
Spinal cord injury (SCI) is a central nervous system- (CNS-) related disorder for which there is yet no successful treatment. Within the past several years, cell-based therapies have been explored for SCI repair, including the use of pluripotent human stem cells, and a number of adult-derived stem and mature cells such as mesenchymal stem cells, olfactory ensheathing cells, and Schwann cells. Although promising, cell transplantation is often overturned by the poor cell survival in the treatment of spinal cord injuries. Alternatively, the therapeutic role of different cells has been used in tissue engineering approaches by engrafting cells with biomaterials. The latter have the advantages of physically mimicking the CNS tissue, while promoting a more permissive environment for cell survival, growth, and differentiation. The roles of both cell- and biomaterial-based therapies as single therapeutic approaches for SCI repair will be discussed in this review. Moreover, as the multifactorial inhibitory environment of a SCI suggests that combinatorial approaches would be more effective, the importance of using biomaterials as cell carriers will be herein highlighted, as well as the recent advances and achievements of these promising tools for neural tissue regeneration.
Resumo:
El avance de la frontera agropecuaria y la urbanización han reducido la superficie boscosa del Espinal en Córdoba a fragmentos que son sumamente valiosos como relictos del ambiente original del Algarrobal y como barreras frente a la acción erosiva del agua y los vientos. Por su estructura, degradada y enmarañada, el productor agropecuario generalmente los visualiza como una molestia ya que le restan superficie apta para el cultivo y resultan poco aprovechables para el pastoreo de los animales. Bajo pautas de manejo adecuadas estos bosquecillos podrían rehabilitarse para el aprovechamiento del ganado y otros usos complementarios. Para que el productor local cuente con herramientas de manejo sustentable de sus recursos naturales es necesario generar información confiable para la zona. En ese contexto, se plantea la siguiente Hipótesis General: Existen alternativas de manejo que, aplicadas sobre los bosques del Espinal, permiten recuperar y conservar la biodiversidad a la vez que mejoran la rentabilidad del productor. El Objetivo General es diseñar y evaluar, en términos ecológicos, tecnológicos y socio-económicos, alternativas de manejo sustentable de bosques degradados del Espinal de la provincia de Córdoba tendientes a su recuperación y conservación. El proyecto se localizará en el bosque fragmentado del Campo Escuela de la FCA-UNC. Se establecerán parcelas con distintos niveles de cobertura arbustiva en las que se medirán el efecto de los arbustos sobre la regeneración de especies arbóreas deseables, la producción y calidad de la pastura, el crecimiento de los árboles y las condiciones edáficas del sistema. Además, la incidencia del ganado vacuno sobre la regeneración de especies arbóreas deseables, la riqueza y abundancia de especies forrajeras deseables y las condiciones edáficas del sistema. Se hará enriquecimiento con plantines de tres especies de Prosopis tanto en el bosque con distintos anchos de fajas como en suelo desmontado, para evaluar su comportamiento. También se probará la diseminación y establecimiento posterior de estas especies por medio de la ingesta del ganado vacuno. Se relevarán especies medicinales, aromáticas, melíferas, tintóreas y ornamentales nativas, y se las valorará económicamente según su uso actual y potencial en esta y otras zonas de la provincia y el país. Se efectuará la caracterización socio-económica y ambiental del área circundante al Campo Escuela y mediante encuestas se determinará el grado de valorización del bosque que tienen los pobladores zonales. Se realizará el análisis económico y financiero del sistema propuesto versus el sistema sin proyecto, considerando bienes producidos y servicios ambientales del bosque y se socializará el proyecto a través de encuestas y reuniones participativas con los productores zonales. Para el análisis de toda la información se usará el software INFOSTAT 2007. Se harán tablas y gráficos de estadística descriptiva para visualizar la distribución de datos. Se usará análisis de correlación, análisis de regresión lineal múltiple, ANAVA y test a posteriori. Se espera generar pautas preliminares de manejo, sencillas y económicas, fácilmente adoptables por los productores de la región, que aseguren la persistencia de estos fragmentos boscosos, relictos de la vegetación original del Espinal.
Resumo:
4
Resumo:
5
Resumo:
2
Resumo:
1