770 resultados para Fluid dynamics -- Study and teaching (Higher)
Resumo:
Universities which set up online repositories for the management of learning and teaching resources commonly find that uptake is poor. Tutors are often reluctant to upload their materials to e-repositories, even though the same tutors are happy to upload resources to the virtual learning environment (e.g. Blackboard, Moodle, Sakai) and happy to upload their research papers to the university’s research publications repository. The paper reviews this phenomenon and suggests constructive ways in which tutors can be encouraged to engage with an e-repository. The authors have recently completed a major project “Developing Repositories at Worcester” which is part of a group of similar projects in the UK. The paper includes the feedback and the lessons learned from these projects, based on the publications and reports they have produced. They cover ways of embedding repository use into institutional working practice, and give examples of different types of repository designed to meet the needs of those using different kinds of learning and teaching resources. As well as this specific experience, the authors summarise some of the main findings from UK publications, in particular the December 2008 report of Joint Information Systems Committee: Good intentions: improving the evidence base in support of sharing learning materials and Online Innovation in Higher Education, Ron Cooke’s report to a UK government initiative on the future of Higher Education. The issues covered include the development of Web 2.0 style repositories rather than conventionally structured ones, the use of tags rather than metadata, the open resources initiative, the best use for conventional repositories, links to virtual learning environments, and the processes for the management and support of repositories within universities. In summary the paper presents an optimistic, constructive view of how to embed the use of e-repositories into the working practices of university tutors. Equally, the authors are aware of the considerable difficulties in making progress and are realistic about what can be achieved. The paper uses evidence and experience drawn from those working in this field to suggest a strategic vision in which the management of e-learning resources is productive, efficient and meets the needs of both tutors and their students.
Resumo:
Investigations into the modelling techniques that depict the transport of discrete phases (gas bubbles or solid particles) and model biochemical reactions in a bubble column reactor are discussed here. The mixture model was used to calculate gas-liquid, solid-liquid and gasliquid-solid interactions. Multiphase flow is a difficult phenomenon to capture, particularly in bubble columns where the major driving force is caused by the injection of gas bubbles. The gas bubbles cause a large density difference to occur that results in transient multi-dimensional fluid motion. Standard design procedures do not account for the transient motion, due to the simplifying assumptions of steady plug flow. Computational fluid dynamics (CFD) can assist in expanding the understanding of complex flows in bubble columns by characterising the flow phenomena for many geometrical configurations. Therefore, CFD has a role in the education of chemical and biochemical engineers, providing the examples of flow phenomena that many engineers may not experience, even through experimentation. The performance of the mixture model was investigated for three domains (plane, rectangular and cylindrical) and three flow models (laminar, k-e turbulence and the Reynolds stresses). mThis investigation raised many questions about how gas-liquid interactions are captured numerically. To answer some of these questions the analogy between thermal convection in a cavity and gas-liquid flow in bubble columns was invoked. This involved modelling the buoyant motion of air in a narrow cavity for a number of turbulence schemes. The difference in density was caused by a temperature gradient that acted across the width of the cavity. Multiple vortices were obtained when the Reynolds stresses were utilised with the addition of a basic flow profile after each time step. To implement the three-phase models an alternative mixture model was developed and compared against a commercially available mixture model for three turbulence schemes. The scheme where just the Reynolds stresses model was employed, predicted the transient motion of the fluids quite well for both mixture models. Solid-liquid and then alternative formulations of gas-liquid-solid model were compared against one another. The alternative form of the mixture model was found to perform particularly well for both gas and solid phase transport when calculating two and three-phase flow. The improvement in the solutions obtained was a result of the inclusion of the Reynolds stresses model and differences in the mixture models employed. The differences between the alternative mixture models were found in the volume fraction equation (flux and deviatoric stress tensor terms) and the viscosity formulation for the mixture phase.
Resumo:
This work presents significant development into chaotic mixing induced through periodic boundaries and twisting flows. Three-dimensional closed and throughput domains are shown to exhibit chaotic motion under both time periodic and time independent boundary motions, A property is developed originating from a signature of chaos, sensitive dependence to initial conditions, which successfully quantifies the degree of disorder withjn the mixing systems presented and enables comparisons of the disorder throughout ranges of operating parameters, This work omits physical experimental results but presents significant computational investigation into chaotic systems using commercial computational fluid dynamics techniques. Physical experiments with chaotic mixing systems are, by their very nature, difficult to extract information beyond the recognition that disorder does, does not of partially occurs. The initial aim of this work is to observe whether it is possible to accurately simulate previously published physical experimental results through using commercial CFD techniques. This is shown to be possible for simple two-dimensional systems with time periodic wall movements. From this, and subsequent macro and microscopic observations of flow regimes, a simple explanation is developed for how boundary operating parameters affect the system disorder. Consider the classic two-dimensional rectangular cavity with time periodic velocity of the upper and lower walls, causing two opposing streamline motions. The degree of disorder within the system is related to the magnitude of displacement of individual particles within these opposing streamlines. The rationale is then employed in this work to develop and investigate more complex three-dimensional mixing systems that exhibit throughputs and time independence and are therefore more realistic and a significant advance towards designing chaotic mixers for process industries. Domains inducing chaotic motion through twisting flows are also briefly considered. This work concludes by offering possible advancements to the property developed to quantify disorder and suggestions of domains and associated boundary conditions that are expected to produce chaotic mixing.
Resumo:
Water-based latices, used in the production of internal liners for beer/beverage cans, were investigated using a number of analytical techniques. The epoxy-graft-acrylic polymers, used to prepare the latices, and films, produced from those latices, were also examined. It was confirmed that acrylic polymer preferentially grafts onto higher molecular weight portions of the epoxy polymer. The amount of epoxy remaining ungrafted was determined to be 80%. This figure is higher than was previously thought. Molecular weight distribution studies were carried out on the epoxy and epoxy-g-acrylic resins. A quantitative method for determining copolymer composition using GPC was evaluated. The GPC method was also used to determine polymer composition as a function of molecular weight. IR spectroscopy was used to determine the total level of acrylic modification of the polymers and NMR was used to determine the level of grafting. Particle size determinations were carried out using transmission electron microscopy and dynamic light scattering. Levels of stabilising amine greatly affected the viscosity of the latex, particle size and amount of soluble polymer but the core particle size, as determined using TEM, was unaffected. NMR spectra of the latices produced spectra only from solvents and amine modifiers. Using solid-state CP/MAS/freezing techniques spectra from the epoxy component could be observed. FT-IR spectra of the latices were obtained after special subtraction of water. The only difference between the spectra of the latices and those of the dry film were due to the presence of the solvents in the former. A distinctive morphology in the films produced from the latices was observed. This suggested that the micelle structure of the latex survives the film forming process. If insufficient acrylic is present, large epoxy domains are produced which gives rise to poor film characteristics. Casting the polymers from organic solutions failed to produce similar morphology.
Resumo:
This comparative study considers the main causative factors for change in recent years in the teaching of modern languages in England and France and seeks to contribute, in a general sense, to the understanding of change in comparable institutions. In England by 1975 the teaching of modern languages in the comprehensive schools was seen to be inappropriate to the needs of children of the whole ability-range. A combination of the external factor of the Council of Europe initiative in devising a needs-based learning approach for adult learners, and the internal factor of teacher-based initiatives in developing a graded-objectives learning approach for the less-able, has reversed this situation to some extent. The study examines and evaluates this reversal, and, in addition, assesses teachers' attitudes towards, and understanding of, the changes involved. In France the imposition of `la reforme Haby' in 1977 and the creation of `le college unique' were the main external factors for change. The subsequent failure of the reform and the socialist government's support of decentralisation policies returning the initiative for renewal to schools are examined and evaluated, as are the internal factors for changes in language-teaching - `groupes de niveau' and the creation of `equipes pedagogiques'. In both countries changes in the function of examinations at 15/16 plus are examined. The final chapter compared the changes in both education systems.
Resumo:
This thesis presents an effective methodology for the generation of a simulation which can be used to increase the understanding of viscous fluid processing equipment and aid in their development, design and optimisation. The Hampden RAPRA Torque Rheometer internal batch twin rotor mixer has been simulated with a view to establishing model accuracies, limitations, practicalities and uses. As this research progressed, via the analyses several 'snap-shot' analysis of several rotor configurations using the commercial code Polyflow, it was evident that the model was of some worth and its predictions are in good agreement with the validation experiments, however, several major restrictions were identified. These included poor element form, high man-hour requirements for the construction of each geometry and the absence of the transient term in these models. All, or at least some, of these limitations apply to the numerous attempts to model internal mixes by other researchers and it was clear that there was no generally accepted methodology to provide a practical three-dimensional model which has been adequately validated. This research, unlike others, presents a full complex three-dimensional, transient, non-isothermal, generalised non-Newtonian simulation with wall slip which overcomes these limitations using unmatched ridding and sliding mesh technology adapted from CFX codes. This method yields good element form and, since only one geometry has to be constructed to represent the entire rotor cycle, is extremely beneficial for detailed flow field analysis when used in conjunction with user defined programmes and automatic geometry parameterisation (AGP), and improves accuracy for investigating equipment design and operation conditions. Model validation has been identified as an area which has been neglected by other researchers in this field, especially for time dependent geometries, and has been rigorously pursued in terms of qualitative and quantitative velocity vector analysis of the isothermal, full fill mixing of generalised non-Newtonian fluids, as well as torque comparison, with a relatively high degree of success. This indicates that CFD models of this type can be accurate and perhaps have not been validated to this extent previously because of the inherent difficulties arising from most real processes.
Resumo:
An ideal of osmotic equilibrium between an ideal solution and pure solvent separated by a semi-permeable membrane is studied numerically using the method of molecular dynamics. The osmotic flow is observed as the inflow of the solvent across the membrane from the dilute to the concentrated side. The validity of van't Hoff's law for osmotic pressure is confirmed over a wide range of concentrations. It is found that the law is established by a balance between non-uniform partial pressures of solute and solvent. Furthermore, the present model permits an understanding of the mechanism of the osmotic flow in the relaxation process as the liquids evolve from the initial state to the equilibrium state. We focus in particular on the interaction between solute and solvent. ©2008 The Physical Society of Japan.
Resumo:
The thesis presents a theoretical and practical study of the dynamic behaviour of electromagnetic relays. After discussing the problem of solving the dynamicc equations analytically and presenting a historical survey of the earlier works in the relay and its dynamics, the simulation of a relay on the analogue computer is discussed. It is shown that the simulation may be used to obtain specific solutions to the dynamic equations. The computer analysis provides the dynamic characteristics for design purposes and may be used in the study of bouncing, rebound oscillations and stability of the armature motion. An approximate analytical solution to the two dynamic equations is given based on the assumption that the dynamic variation of the pull with the position of the armature is linear. The assumption is supported by the Computer-aided analysis and experimental results. The solution is intended to provide a basis for a rational design. A rigorous method of analysing the dynamic performance by using Ahlberg's theory is also presented. This method may be justified to be the extension of Ahlberg's theory by taking the mass and frictional damping forces into account. While calculating the armature motion mathematically, Ahlberg considers the equilibrium of two kinds of forces, namely pull and load, and disregards the mass and friction forces, whereas the present method deals with the equilibrium of all four kinds of forces. It is shown how this can be utilised to calculate the dynamic characteristics for a specific design. The utility of this method also extends to the study of stability, contact bounce and armature rebound. The magnetic circuit and other related topics which are essential to the study of relay dynamics are discussed and some necessary experimental results are given.
Resumo:
Earlier investigations (Cartland Glover et al., 2004) into the use of computational fluid dynamics (CFD) for the modelling of gas-liquid and gas-liquid-solid flow allowed a simple biochemical reaction model to be implemented. A single plane mesh was used to represent the transport and reaction of molasses, the mould Aspergillus niger and citric acid in a bubble column with a height to diameter aspect ratio of 20:1. Two specific growth rates were used to examine the impact that biomass growth had on the local solids concentration and the effect this had on the local hydrodynamics of the bubble column.
Resumo:
The effect of stress on vacancy cluster configurations in silicon is examined using molecular dynamics. At zero pressure, the shape and stability of the vacancy clusters agrees with previous atomistic results. When stress is applied the orientation of small planar clusters changes to reduce the strain energy. The preferred orientation for the vacancy clusters under stress agrees with the experimentally observed orientations of hydrogen platelets in the high stress regions of hydrogen implanted silicon. These results suggest a theory for hydrogen platelet formation. © 2005 The American Physical Society.
Resumo:
All-atom molecular dynamics simulations for a single molecule of Leu-Enkephalin in aqueous solution have been used to study the role of the water network during the formation of ß-turns. We give a detailed account of the intramolecular hydrogen bonding, the water-peptide hydrogen bonding, and the orientation and residence times of water molecules focusing on the short critical periods of transition to the stable ß-turns. These studies suggest that, when intramolecular hydrogen bonding between the first and fourth residue of the ß-turn is not present, the disruption of the water network and the establishment of water bridges constitute decisive factors in the formation and stability of the ß-turn. Finally, we provide possible explanations and mechanisms for the formations of different kinds of ß-turns.
Resumo:
Homogenous secondary pyrolysis is category of reactions following the primary pyrolysis and presumed important for fast pyrolysis. For the comprehensive chemistry and fluid dynamics, a probability density functional (PDF) approach is used; with a kinetic scheme comprising 134 species and 4169 reactions being implemented. With aid of acceleration techniques, most importantly Dimension Reduction, Chemistry Agglomeration and In-situ Tabulation (ISAT), a solution within reasonable time was obtained. More work is required; however, a solution for levoglucosan (C6H10O5) being fed through the inlet with fluidizing gas at 500 °C, has been obtained. 88.6% of the levoglucosan remained non-decomposed, and 19 different decomposition product species were found above 0.01% by weight. A homogenous secondary pyrolysis scheme proposed can thus be implemented in a CFD environment and acceleration techniques can speed-up the calculation for application in engineering settings.
Resumo:
Learning and teaching approaches to engineering are generally perceived to be difficult and academically challenging. Such challenges are reflected in high levels of student attrition and failure. In addressing this issue, a unique approach to engineering education has been developed by the paper authors. This approach, which is suitable for undergraduate and postgraduate levels, brings together pedagogic and engineering epistemologies in an empirically grounded framework. It is underpinned by three distinctive concepts: Relationships, Variety & Synergy. Based upon research, the R + V + S approach to Engineering Education provides a learning and teaching strategy, which in enhancing the student experience, increases retention and positively impacts student success [S2]. Based on the study findings, this paper shows how, by designing engineering education around the concepts of Relationships, Variety and Synergy, the student learning experience becomes one that is academically challenging yet beneficial to both students and engineering educators. The challenge is to widen and test the approach in other areas of engineering education, before going on to investigate the value of the approach in other disciplines.
Resumo:
International travel has significant implications on the study of architecture. This study analyzed ways in which undergraduate and graduate students benefited from the experience of international travel and study abroad. Taken from the perspective of 15 individuals who were currently or had been architecture students at the University of Miami and Florida International University or who were alumni of the University of Florida and Syracuse University, the research explored how international travel and study abroad enhanced their awareness and understanding of architecture, and how it complemented their architecture curricula. This study also addressed a more personal aspect of international travel in order to learn how the experience and exposure to foreign cultures had positively influenced the personal and professional development of the participants.^ Participants’ individual and two-person semi-structured interviews about study abroad experiences were electronically recorded and transcribed for analysis. A second interview was conducted with five of the participants to obtain feedback concerning the accuracy of the transcripts and the interpretation of the data. Sketch journals and design projects were also analyzed from five participants and used as data for the purposes of better understanding what these individuals learned and experienced as part of their study abroad.^ Findings indicated that study abroad experiences helped to broaden student understanding about architecture and urban development. These experiences also opened the possibilities of creative and professional expression. For many, this was the most important aspect of their education as architects because it heightened their interest in architecture. These individuals talked about how they had the opportunity to experience contemporary and ancient buildings that they had learned about in their history and design classes on their home campuses. In terms of personal and professional development, many of the participants remarked that they became more independent and self-reliant because of their study abroad experiences. They also displayed a sense of global awareness and were interested in the cultures of their host nations. The study abroad experiences also had a lasting influence on their professional development.^