998 resultados para Finite Chian Rings
Resumo:
In this paper, we present a spectral finite element model (SFEM) using an efficient and accurate layerwise (zigzag) theory, which is applicable for wave propagation analysis of highly inhomogeneous laminated composite and sandwich beams. The theory assumes a layerwise linear variation superimposed with a global third-order variation across the thickness for the axial displacement. The conditions of zero transverse shear stress at the top and bottom and its continuity at the layer interfaces are subsequently enforced to make the number of primary unknowns independent of the number of layers, thereby making the theory as efficient as the first-order shear deformation theory (FSDT). The spectral element developed is validated by comparing the present results with those available in the literature. A comparison of the natural frequencies of simply supported composite and sandwich beams obtained by the present spectral element with the exact two-dimensional elasticity and FSDT solutions reveals that the FSDT yields highly inaccurate results for the inhomogeneous sandwich beams and thick composite beams, whereas the present element based on the zigzag theory agrees very well with the exact elasticity solution for both thick and thin, composite and sandwich beams. A significant deviation in the dispersion relations obtained using the accurate zigzag theory and the FSDT is also observed for composite beams at high frequencies. It is shown that the pure shear rotation mode remains always evanescent, contrary to what has been reported earlier. The SFEM is subsequently used to study wavenumber dispersion, free vibration and wave propagation time history in soft-core sandwich beams with composite faces for the first time in the literature. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Infinite arrays of coupled two-state stochastic oscillators exhibit well-defined steady states. We study the fluctuations that occur when the number N of oscillators in the array is finite. We choose a particular form of global coupling that in the infinite array leads to a pitchfork bifurcation from a monostable to a bistable steady state, the latter with two equally probable stationary states. The control parameter for this bifurcation is the coupling strength. In finite arrays these states become metastable: The fluctuations lead to distributions around the most probable states, with one maximum in the monostable regime and two maxima in the bistable regime. In the latter regime, the fluctuations lead to transitions between the two peak regions of the distribution. Also, we find that the fluctuations break the symmetry in the bimodal regime, that is, one metastable state becomes more probable than the other, increasingly so with increasing array size. To arrive at these results, we start from microscopic dynamical evolution equations from which we derive a Langevin equation that exhibits an interesting multiplicative noise structure. We also present a master equation description of the dynamics. Both of these equations lead to the same Fokker-Planck equation, the master equation via a 1/N expansion and the Langevin equation via standard methods of Ito calculus for multiplicative noise. From the Fokker-Planck equation we obtain an effective potential that reflects the transition from the monomodal to the bimodal distribution as a function of a control parameter. We present a variety of numerical and analytic results that illustrate the strong effects of the fluctuations. We also show that the limits N -> infinity and t -> infinity(t is the time) do not commute. In fact, the two orders of implementation lead to drastically different results.
Resumo:
Mass balance between metal and electrolytic solution, separated by a moving interface, in stable pit growth results in a set of governing equations which are solved for concentration field and interface position (pit boundary evolution), which requires only three inputs, namely the solid metal concentration, saturation concentration of the dissolved metal ions and diffusion coefficient. A combined eXtended Finite Element Model (XFEM) and level set method is developed in this paper. The extended finite element model handles the jump discontinuity in the metal concentrations at the interface, by using discontinuous-derivative enrichment formulation for concentration discontinuity at the interface. This eliminates the requirement of using front conforming mesh and re-meshing after each time step as in conventional finite element method. A numerical technique known as level set method tracks the position of the moving interface and updates it over time. Numerical analysis for pitting corrosion of stainless steel 304 is presented. The above proposed method is validated by comparing the numerical results with experimental results, exact solutions and some other approximate solutions.
Resumo:
The formulation of higher order structural models and their discretization using the finite element method is difficult owing to their complexity, especially in the presence of non-linearities. In this work a new algorithm for automating the formulation and assembly of hyperelastic higher-order structural finite elements is developed. A hierarchic series of kinematic models is proposed for modeling structures with special geometries and the algorithm is formulated to automate the study of this class of higher order structural models. The algorithm developed in this work sidesteps the need for an explicit derivation of the governing equations for the individual kinematic modes. Using a novel procedure involving a nodal degree-of-freedom based automatic assembly algorithm, automatic differentiation and higher dimensional quadrature, the relevant finite element matrices are directly computed from the variational statement of elasticity and the higher order kinematic model. Another significant feature of the proposed algorithm is that natural boundary conditions are implicitly handled for arbitrary higher order kinematic models. The validity algorithm is illustrated with examples involving linear elasticity and hyperelasticity. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
This paper presents a newly developed wavelet spectral finite element (WFSE) model to analyze wave propagation in anisotropic composite laminate with a transverse surface crack penetrating part-through the thickness. The WSFE formulation of the composite laminate, which is based on the first-order shear deformation theory, produces accurate and computationally efficient results for high frequency wave motion. Transverse crack is modeled in wavenumber-frequency domain by introducing bending flexibility of the plate along crack edge. Results for tone burst and impulse excitations show excellent agreement with conventional finite element analysis in Abaqus (R). Problems with multiple cracks are modeled by assembling a number of spectral elements with cracks in frequency-wavenumber domain. Results show partial reflection of the excited wave due to crack at time instances consistent with crack locations. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Mass balance between metal and electrolytic solution, separated by a moving interface, in stable pit growth results in a set of governing equations which are solved for concentration field and interface position (pit boundary evolution). The interface experiences a jump discontinuity in metal concentration. The extended finite-element model (XFEM) handles this jump discontinuity by using discontinuous-derivative enrichment formulation, eliminating the requirement of using front conforming mesh and re-meshing after each time step as in the conventional finite-element method. However, prior interface location is required so as to solve the governing equations for concentration field for which a numerical technique, the level set method, is used for tracking the interface explicitly and updating it over time. The level set method is chosen as it is independent of shape and location of the interface. Thus, a combined XFEM and level set method is developed in this paper. Numerical analysis for pitting corrosion of stainless steel 304 is presented. The above proposed model is validated by comparing the numerical results with experimental results, exact solutions and some other approximate solutions. An empirical model for pitting potential is also derived based on the finite-element results. Studies show that pitting profile depends on factors such as ion concentration, solution pH and temperature to a large extent. Studying the individual and combined effects of these factors on pitting potential is worth knowing, as pitting potential directly influences corrosion rate.
Resumo:
We calculate one, two and three point functions of the holographic stress tensor for any bulk Lagrangian of the form L (g(ab), R-abcd, del(e) R-abcd). Using the first law of entanglement, a simple method has recently been proposed to compute the holographic stress tensor arising from a higher derivative gravity dual. The stress tensor is proportional to a dimension dependent factor which depends on the higher derivative couplings. In this paper, we identify this proportionality constant with a B-type trace anomaly in even dimensions for any bulk Lagrangian of the above form. This in turn relates to C-T, the coefficient appearing in the two point function of stress tensors. We use a background field method to compute the two and three point function of stress tensors for any bulk Lagrangian of the above form in arbitrary dimensions. As an application we consider general situations where eta/s for holographic plasmas is less than the KSS bound.
Resumo:
Finite volume methods traditionally employ dimension by dimension extension of the one-dimensional reconstruction and averaging procedures to achieve spatial discretization of the governing partial differential equations on a structured Cartesian mesh in multiple dimensions. This simple approach based on tensor product stencils introduces an undesirable grid orientation dependence in the computed solution. The resulting anisotropic errors lead to a disparity in the calculations that is most prominent between directions parallel and diagonal to the grid lines. In this work we develop isotropic finite volume discretization schemes which minimize such grid orientation effects in multidimensional calculations by eliminating the directional bias in the lowest order term in the truncation error. Explicit isotropic expressions that relate the cell face averaged line and surface integrals of a function and its derivatives to the given cell area and volume averages are derived in two and three dimensions, respectively. It is found that a family of isotropic approximations with a free parameter can be derived by combining isotropic schemes based on next-nearest and next-next-nearest neighbors in three dimensions. Use of these isotropic expressions alone in a standard finite volume framework, however, is found to be insufficient in enforcing rotational invariance when the flux vector is nonlinear and/or spatially non-uniform. The rotationally invariant terms which lead to a loss of isotropy in such cases are explicitly identified and recast in a differential form. Various forms of flux correction terms which allow for a full recovery of rotational invariance in the lowest order truncation error terms, while preserving the formal order of accuracy and discrete conservation of the original finite volume method, are developed. Numerical tests in two and three dimensions attest the superior directional attributes of the proposed isotropic finite volume method. Prominent anisotropic errors, such as spurious asymmetric distortions on a circular reaction-diffusion wave that feature in the conventional finite volume implementation are effectively suppressed through isotropic finite volume discretization. Furthermore, for a given spatial resolution, a striking improvement in the prediction of kinetic energy decay rate corresponding to a general two-dimensional incompressible flow field is observed with the use of an isotropic finite volume method instead of the conventional discretization. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
The nature of the signal due to light beam induced current (LBIC) at the remote contacts is verified as a lateral photovoltage for non-uniformly illuminated planar p-n junction devices; simulation and experimental results are presented. The limitations imposed by the ohmic contacts are successfully overcome by the introduction of capacitively coupled remote contacts, which yield similar results without any significant loss in the estimated material and device parameters. It is observed that the LBIC measurements introduce artefacts such as shift in peak position with increasing laser power. Simulation of LBIC signal as a function of characteristic length L-c of photo-generated carriers and for different beam diameters has resulted in the observed peak shifts, thus attributed to the finite size of the beam. Further, the idea of capacitively coupled contacts has been extended to contactless measurements using pressure contacts with an oxidized aluminium electrodes. This technique avoids the contagious sample processing steps, which may introduce unintentional defects and contaminants into the material and devices under observation. Thus, we present here, the remote contact LBIC as a practically non-destructive tool in the evaluation of device parameters and welcome its use during fabrication steps. (C) 2014 AIP Publishing LLC.
Resumo:
The standard approach to signal reconstruction in frequency-domain optical-coherence tomography (FDOCT) is to apply the inverse Fourier transform to the measurements. This technique offers limited resolution (due to Heisenberg's uncertainty principle). We propose a new super-resolution reconstruction method based on a parametric representation. We consider multilayer specimens, wherein each layer has a constant refractive index and show that the backscattered signal from such a specimen fits accurately in to the framework of finite-rate-of-innovation (FRI) signal model and is represented by a finite number of free parameters. We deploy the high-resolution Prony method and show that high-quality, super-resolved reconstruction is possible with fewer measurements (about one-fourth of the number required for the standard Fourier technique). To further improve robustness to noise in practical scenarios, we take advantage of an iterated singular-value decomposition algorithm (Cadzow denoiser). We present results of Monte Carlo analyses, and assess statistical efficiency of the reconstruction techniques by comparing their performance against the Cramer-Rao bound. Reconstruction results on experimental data obtained from technical as well as biological specimens show a distinct improvement in resolution and signal-to-reconstruction noise offered by the proposed method in comparison with the standard approach.
Resumo:
Using numerical diagonalization we study the crossover among different random matrix ensembles (Poissonian, Gaussian orthogonal ensemble (GOE), Gaussian unitary ensemble (GUE) and Gaussian symplectic ensemble (GSE)) realized in two different microscopic models. The specific diagnostic tool used to study the crossovers is the level spacing distribution. The first model is a one-dimensional lattice model of interacting hard-core bosons (or equivalently spin 1/2 objects) and the other a higher dimensional model of non-interacting particles with disorder and spin-orbit coupling. We find that the perturbation causing the crossover among the different ensembles scales to zero with system size as a power law with an exponent that depends on the ensembles between which the crossover takes place. This exponent is independent of microscopic details of the perturbation. We also find that the crossover from the Poissonian ensemble to the other three is dominated by the Poissonian to GOE crossover which introduces level repulsion while the crossover from GOE to GUE or GOE to GSE associated with symmetry breaking introduces a subdominant contribution. We also conjecture that the exponent is dependent on whether the system contains interactions among the elementary degrees of freedom or not and is independent of the dimensionality of the system.
On Precoding for Constant K-User MIMO Gaussian Interference Channel With Finite Constellation Inputs
Resumo:
This paper considers linear precoding for the constant channel-coefficient K-user MIMO Gaussian interference channel (MIMO GIC) where each transmitter-i (Tx-i) requires the sending of d(i) independent complex symbols per channel use that take values from fixed finite constellations with uniform distribution to receiver-i (Rx-i) for i = 1, 2, ..., K. We define the maximum rate achieved by Tx-i using any linear precoder as the signal-to-noise ratio (SNR) tends to infinity when the interference channel coefficients are zero to be the constellation constrained saturation capacity (CCSC) for Tx-i. We derive a high-SNR approximation for the rate achieved by Tx-i when interference is treated as noise and this rate is given by the mutual information between Tx-i and Rx-i, denoted as I(X) under bar (i); (Y) under bar (i)]. A set of necessary and sufficient conditions on the precoders under which I(X) under bar (i); (Y) under bar (i)] tends to CCSC for Tx-i is derived. Interestingly, the precoders designed for interference alignment (IA) satisfy these necessary and sufficient conditions. Furthermore, we propose gradient-ascentbased algorithms to optimize the sum rate achieved by precoding with finite constellation inputs and treating interference as noise. A simulation study using the proposed algorithms for a three-user MIMO GIC with two antennas at each node with d(i) = 1 for all i and with BPSK and QPSK inputs shows more than 0.1-b/s/Hz gain in the ergodic sum rate over that yielded by precoders obtained from some known IA algorithms at moderate SNRs.
Resumo:
Composite laminates are prone to delamination. Implementation of delamination in the Carrera Unified Formulation frame work using nine noded quadrilateral MITC9 element is discussed in this article. MITC9 element is devoid of shear locking and membrane locking. Delaminated as well as healthy structure is analyzed for free mode vibration. The results from the present work are compared with the available experimental or/and research article or/and the three dimensional finite element simulations. The effect of different kinds and different percentages of area of delamination on the first three natural frequencies of the structure is discussed. The presence of open-mode delamination mode shape for large delaminations within the first three natural frequencies is discussed. Also, the switching of places between the second bending mode, with that of the first torsional mode frequency is discussed. Results obtained from different ordered theories are compared in the presence of delamination. Advantage of layerwise theories as compared to equivalent single layer theories for very large delaminations is stated. The effect of different kinds of delamination and their effect on the second bending and first torsional mode shape is discussed. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The occurrence of spurious solutions is a well-known limitation of the standard nodal finite element method when applied to electromagnetic problems. The two commonly used remedies that are used to address this problem are (i) The addition of a penalty term with the penalty factor based on the local dielectric constant, and which reduces to a Helmholtz form on homogeneous domains (regularized formulation); (ii) A formulation based on a vector and a scalar potential. Both these strategies have some shortcomings. The penalty method does not completely get rid of the spurious modes, and both methods are incapable of predicting singular eigenvalues in non-convex domains. Some non-zero spurious eigenvalues are also predicted by these methods on non-convex domains. In this work, we develop mixed finite element formulations which predict the eigenfrequencies (including their multiplicities) accurately, even for nonconvex domains. The main feature of the proposed mixed finite element formulation is that no ad-hoc terms are added to the formulation as in the penalty formulation, and the improvement is achieved purely by an appropriate choice of finite element spaces for the different variables. We show that the formulation works even for inhomogeneous domains where `double noding' is used to enforce the appropriate continuity requirements at an interface. For two-dimensional problems, the shape of the domain can be arbitrary, while for the three-dimensional ones, with our current formulation, only regular domains (which can be nonconvex) can be modeled. Since eigenfrequencies are modeled accurately, these elements also yield accurate results for driven problems. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Recent experiments using three point bend specimens of Mg single crystals have revealed that tensile twins of {10 (1) over bar2}-type form profusely near a notch tip and enhance the fracture toughness through large plastic dissipation. In this work, 3D finite element simulations of these experiments are carried out using a crystal plasticity framework which includes slip and twinning to gain insights on the mechanics of fracture. The predicted load-displacement curves, slip and tensile twinning activities from finite element analysis corroborate well with the experimental observations. The numerical results are used to explore the 3D nature of the crack tip stress, plastic slip and twin volume fraction distributions near the notch root. The occurrence of tensile twinning is rationalized from the variation of normal stress ahead of the notch tip. Further, deflection of the crack path at twin-twin intersections observed in the experiments is examined from an energy standpoint by modeling discrete twins close to the notch root.