959 resultados para Fiber-based counterparts
Resumo:
The curvature- or bend-sensing response of long-period gratings (LPGs) UV inscribed in D-shaped fiber has been investigated experimentally. Strong fiber-orientation dependence of the spectral response when such LPGs are subjected to bending at different directions has been observed and is shown to form the basis for a new class of single-device sensor with vector-sensing capability. Potential applications utilizing the linear response and unique bend-orientation characteristics of the devices are discussed.
Resumo:
We present, for the first time to our knowledge, experimental evidence showing that superimposed blazed fiber Bragg gratings may be fabricated and used to extend the dynamic range of a grating-based spectrometer. Blazed gratings of 4° and 8° were superimposed in germanosilicate fiber by ultraviolet inscription and used in conjunction with a coated charged-coupled device array to interrogate a wavelength-division-multiplexing sensor array. We show that the system can be used to monitor strain and temperature sensors simultaneously with an employable bandwidth which is extendable to 70 nm.
Resumo:
Two in-fiber Bragg grating (FBG) temperature sensor systems for medical applications are demonstrated: (1) an FBG flow-directed thermodilution catheter based on interferometric detection of wavelength shift that is used for cardiac monitoring; and (2) an FBG sensor system with a tunable Fabry-Perot filter for in vivo temperature profiling in nuclear magnetic resonance (NMR) machines. Preliminary results show that the FBG sensor is in good agreement with electrical sensors that are widely used in practice. A field test shows that the FBG sensor system is suitable for in situ temperature profiling in NMR machines for medical applications.
Resumo:
We describe the results of in-vivo trials of a portable fiber Bragg grating based temperature profile monitoring system. The probe incorporates five Bragg gratings along a single fiber and prevents the gratings from being strained. Illumination is provided by a superluminescent diode, and a miniature CCD based spectrometer is used for demultiplexing. The CCD signal is read into a portable computer through a small A/D interface; the computer then calculates the positions of the center wavelengths of the Bragg gratings, providing a resolution of 0.2°C. Tests were carried out on rabbits undergoing hyperthermia treatment of the kidney and liver via inductive heating of metallic implants and comparison was made with a commercial Fluoroptic thermometry system.
Resumo:
A low cost interrogation scheme is demonstrated for a refractometer based on an in-line fiber long period grating (LPG) Mach–Zehnder interferometer. Using this interrogation scheme the minimum detectable change in refractive index of ?n ~ 1.8×10-6 is obtained, which is the highest resolution achieved using a fiber LPG device, and is comparable to precision techniques used in the industry including high performance liquid chromatography and ultraviolet spectroscopy.
Resumo:
We report a near-ideal in-fiber polarizer implemented by use of 45° tilted fiber Bragg grating structures that are UV inscribed in hydrogenated Ge-doped fiber. We demonstrate a polarization-extinction ratio of 33 dB over a 100-nm operation range near 1550 nm. We further show an achievement of 99.5% degree of polarization for unpolarized light with these gratings. We also theoretically investigate tilted grating structures based on the Green's function calculation, therein revealing the unique polarization characteristics, which are in excellent agreement with experimental data.
Resumo:
We propose and demonstrate novel virtual Gires–Tournois (GT) etalons based on fiber gratings. By introducing an additional phase modulation in wideband linearly chirped fiber Bragg gratings, we have successfully generated GT resonance with only one grating. This technique can simplify the fabrication procedure while retaining the normal advantages of distributed etalons, including their full compatibility with optical fiber, low insertion loss, and low cost. Such etalons can be used as dispersion compensation devices in optical transmission systems.
Resumo:
A 1.2X500µm slot was engraved across a fiber Bragg grating (FBG) using femtosecond laser patterning and chemical etching. liquid core FBGs were constructed and their sensitivity to refractive index of up to 10-6/pm was measured.
Resumo:
A novel, direction-sensitive bending sensor based on an asymmetric fiber Bragg grating (FBG) inscribed by an infrared femtosecond laser was demonstrated. The technique is based on tight transverse confinement of the femto-inscribed structures and can be directly applied in conventional, untreated singlemode fibers. The FBG structure was inscribed by an amplified, titanium sapphire laser system. The grating cross-section was elongated along the direction of the laser beam with the transverse dimensions of approximately 1 by 2 μm. It was suggested that the sensitivity of the device can be improved by inscribing smaller spatial features and by implementing more complex grating designs aimed at maximizing the effect of strain.
Resumo:
A bidirectional nonreciprocal wavelength-interleaving filter based on an optically coherent high birefringence fiber transversal filter structure is demonstrated. Stable, low loss, low dispersion, and high isolation operation is demonstrated with reconfigurable transfer characteristics for interleaved channel spacing of 0.8 nm.
Resumo:
We describe the results of in-vivo trials of a portable fiber Bragg grating based temperature profile monitoring system. The probe incorporates five Bragg gratings along a single fiber and prevents the gratings from being strained. Illumination is provided by a superluminescent diode, and a miniature CCD based spectrometer is used for demultiplexing. The CCD signal is read into a portable computer through a small A/D interface; the computer then calculates the positions of the center wavelengths of the Bragg gratings, providing a resolution of 0.2 °C. Tests were carried out on rabbits undergoing hyperthermia treatment of the kidney and liver via inductive heating of metallic implants and comparison was made with a commercial Fluoroptic thermometry system.
Resumo:
We demonstrate a liquid level sensor based on the surrounding medium refractive index (SRI) sensing using of an excessively tilted fibre Bragg grating (ETFBG). The sensor has low thermal cross sensitivity and high SRI responsivity.
Resumo:
Recent work on ultra-long Raman fiber lasers has shown that it is possible to create quasi-lossless transmission conditions in fiber spans long enough to be considered for high speed optical communications. This paper reviews how quasi-lossless transmission conditions are reached and presents experimental results of 40Gb/s transmission in a quasi lossless system. The performance is compared with a conventional EDFA based system.
Resumo:
We present a study on the potential use of ultra-longlasercavities for unrepeateredfiber communication, based on the theory of nonlinearity management. A comparison is offered between the performance of ultra-longlasers and standard bi-directional distributed amplification schemes in nonrepeated transmission. Links based on both traditional (SMF/DCF) and modern Ultrawave transmissionfibers are considered.