907 resultados para Feely, Jay


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Populations of Lesser Scaup (Aythya affinis) have declined markedly in North America since the early 1980s. When considering alternatives for achieving population recovery, it would be useful to understand how the rate of population growth is functionally related to the underlying vital rates and which vital rates affect population growth rate the most if changed (which need not be those that influenced historical population declines). To establish a more quantitative basis for learning about life history and population dynamics of Lesser Scaup, we summarized published and unpublished estimates of vital rates recorded between 1934 and 2005, and developed matrix life-cycle models with these data for females breeding in the boreal forest, prairie-parklands, and both regions combined. We then used perturbation analysis to evaluate the effect of changes in a variety of vital-rate statistics on finite population growth rate and abundance. Similar to Greater Scaup (Aythya marila), our modeled population growth rate for Lesser Scaup was most sensitive to unit and proportional change in adult female survival during the breeding and non-breeding seasons, but much less so to changes in fecundity parameters. Interestingly, population growth rate was also highly sensitive to unit and proportional changes in the mean of nesting success, duckling survival, and juvenile survival. Given the small samples of data for key aspects of the Lesser Scaup life cycle, we recommend additional research on vital rates that demonstrate a strong effect on population growth and size (e.g., adult survival probabilities). Our life-cycle models should be tested and regularly updated in the future to simultaneously guide science and management of Lesser Scaup populations in an adaptive context.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Aspen Parkland of Canada is one of the most important breeding areas for temperate nesting ducks in North America. The region is dominated by agricultural land use, with approximately 9.3 million ha in pasture land for cattle grazing. However, the effects of using land for cattle grazing on upland-nesting duck production are poorly understood. The current study was undertaken during 2001 and 2002 to investigate how nest density and nesting success of upland-nesting ducks varied with respect to the intensity of cattle grazing in the Aspen Parkland. We predicted that the removal and trampling of vegetation through cattle grazing would reduce duck nest density. Both positive and negative responses of duck nesting success to grazing have been reported in previous studies, leading us to test competing hypotheses that nesting success would (1) decline linearly with grazing intensity or (2) peak at moderate levels of grazing. Nearly 3300 ha of upland cover were searched during the study. Despite extensive and severe drought, nest searches located 302 duck nests. As predicted, nest density was higher in fields with lower grazing intensity and higher pasture health scores. A lightly grazed field with a pasture score of 85 out of a possible 100 was predicted to have 16.1 nests/100 ha (95% CI = 11.7–22.1), more than five times the predicted nest density of a heavily grazed field with a pasture score of 58 (3.3 nests/100 ha, 95% CI = 2.2–4.5). Nesting success was positively related to nest-site vegetation density across most levels of grazing intensity studied, supporting our hypothesis that reductions in vegetation caused by grazing would negatively affect nesting success. However, nesting success increased with grazing intensity at the field scale. For example, nesting success for a well-concealed nest in a lightly grazed field was 11.6% (95% CI = 3.6–25.0%), whereas nesting success for a nest with the same level of nest-site vegetation in a heavily grazed field was 33.9% (95% CI = 17.0–51.8%). Across the range of residual cover observed in this study, nests with above-average nest-site vegetation density had nesting success rates that exceeded the levels believed necessary to maintain duck populations. Our findings on complex and previously unreported relationships between grazing, nest density, and nesting success provide useful insights into the management and conservation of ground-nesting grassland birds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Urbanization changes habitat in a multitude of ways, including altering food availability. Access to human-provided food can change the relationship between body condition and honest advertisements of fitness, which may result in changes to behavior, demography, and metapopulation dynamics. We compared plumage color, its relationship with body condition and feather growth, and use as signal of dominance between a suburban and a wildland population of Florida Scrub-Jay (Aphelocoma coerulescens). Although plumage color was not related to body condition at either site, suburban birds had plumage with a greater proportion of total reflectance in the ultra-violet (UV) and peak reflectance at shorter wavelengths. Despite the use of plumage reflectance as a signal of dominance among individuals in the wildlands, we found no evidence of status signaling at the suburban site. However, birds emigrating from the suburban site to the wildland site tended to be more successful at acquiring breeder status but less successful at reproducing than were immigrants from an adjacent wildland site, suggesting that signaled and realized quality differ. These differences in signaling content among populations could have demographic effects at metapopulation scales and may represent an evolutionary trap whereby suburban immigrants are preferred as mates even though their reproductive success relative to effort is lower.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Short-eared Owl (Asio flammeus) is an open-country species breeding in the northern United States and Canada, and has likely experienced a long-term, range-wide, and substantial decline. However, the cause and magnitude of the decline is not well understood. We set forth to address the first two of six previously proposed conservation priorities to be addressed for this species: (1) better define habitat use and (2) improve population monitoring. We recruited 131 volunteers to survey over 6.2 million ha within the state of Idaho for Short-eared Owls during the 2015 breeding season. We surveyed 75 transects, 71 of which were surveyed twice, and detected Short-eared Owls on 27 transects. We performed multiscale occupancy modeling to identify habitat associations, and performed multiscale abundance modeling to generate a state-wide population estimate. Our results suggest that within the state of Idaho, Short-eared Owls are more often found in areas with marshland or riparian habitat or areas with greater amounts of sagebrush habitat at the 1750 ha transect scale. At the 50 ha point scale, Short-eared Owls tend to associate positively with fallow and bare dirt agricultural land and negatively with grassland. Cropland was not chosen at the broader transect scale suggesting that Short-eared Owls may prefer more heterogeneous landscapes. On the surface our results may seem contradictory to the presumed land use by a “grassland” species; however, the grasslands of the Intermountain West, consisting largely of invasive cheatgrass (Bromus tectorum), lack the complex structure shown to be preferred by these owls. We suggest the local adaptation to agriculture represents the next best habitat to their historical native habitat preferences. Regardless, we have confirmed regional differences that should be considered in conservation planning for this species. Last, our results demonstrate the feasibility, efficiency, and effectiveness of utilizing public participation in scientific research to achieve a robust sampling methodology across the broad geography of the Intermountain West.