880 resultados para Feature ontology
Resumo:
This paper proposes a method for the identification of different partial discharges (PDs) sources through the analysis of a collection of PD signals acquired with a PD measurement system. This method, robust and sensitive enough to cope with noisy data and external interferences, combines the characterization of each signal from the collection, with a clustering procedure, the CLARA algorithm. Several features are proposed for the characterization of the signals, being the wavelet variances, the frequency estimated with the Prony method, and the energy, the most relevant for the performance of the clustering procedure. The result of the unsupervised classification is a set of clusters each containing those signals which are more similar to each other than to those in other clusters. The analysis of the classification results permits both the identification of different PD sources and the discrimination between original PD signals, reflections, noise and external interferences. The methods and graphical tools detailed in this paper have been coded and published as a contributed package of the R environment under a GNU/GPL license.
Resumo:
Durante el proceso de producción de voz, los factores anatómicos, fisiológicos o psicosociales del individuo modifican los órganos resonadores, imprimiendo en la voz características particulares. Los sistemas ASR tratan de encontrar los matices característicos de una voz y asociarlos a un individuo o grupo. La edad y sexo de un hablante son factores intrínsecos que están presentes en la voz. Este trabajo intenta diferenciar esas características, aislarlas y usarlas para detectar el género y la edad de un hablante. Para dicho fin, se ha realizado el estudio y análisis de las características basadas en el pulso glótico y el tracto vocal, evitando usar técnicas clásicas (como pitch y sus derivados) debido a las restricciones propias de dichas técnicas. Los resultados finales de nuestro estudio alcanzan casi un 100% en reconocimiento de género mientras en la tarea de reconocimiento de edad el reconocimiento se encuentra alrededor del 80%. Parece ser que la voz queda afectada por el género del hablante y las hormonas, aunque no se aprecie en la audición. ABSTRACT Particular elements of the voice are printed during the speech production process and are related to anatomical and physiological factors of the phonatory system or psychosocial factors acquired by the speaker. ASR systems attempt to find those peculiar nuances of a voice and associate them to an individual or a group. Age and gender are inherent factors to the speaker which may be represented in voice. This work attempts to differentiate those characteristics, isolate them and use them to detect speaker’s gender and age. Features based on glottal pulse and vocal tract are studied and analyzed in order to achieve good results in both tasks. Classical methodologies (such as pitch and derivates) are avoided since the requirements of those techniques may be too restrictive. The final scores achieve almost 100% in gender recognition whereas in age recognition those scores are around 80%. Factors related to the gender and hormones seem to affect the voice although they are not audible.
Resumo:
In the last decade, the research community has focused on new classification methods that rely on statistical characteristics of Internet traffic, instead of pre-viously popular port-number-based or payload-based methods, which are under even bigger constrictions. Some research works based on statistical characteristics generated large fea-ture sets of Internet traffic; however, nowadays it?s impossible to handle hun-dreds of features in big data scenarios, only leading to unacceptable processing time and misleading classification results due to redundant and correlative data. As a consequence, a feature selection procedure is essential in the process of Internet traffic characterization. In this paper a survey of feature selection methods is presented: feature selection frameworks are introduced, and differ-ent categories of methods are briefly explained and compared; several proposals on feature selection in Internet traffic characterization are shown; finally, future application of feature selection to a concrete project is proposed.
Resumo:
This work proposes an automatic methodology for modeling complex systems. Our methodology is based on the combination of Grammatical Evolution and classical regression to obtain an optimal set of features that take part of a linear and convex model. This technique provides both Feature Engineering and Symbolic Regression in order to infer accurate models with no effort or designer's expertise requirements. As advanced Cloud services are becoming mainstream, the contribution of data centers in the overall power consumption of modern cities is growing dramatically. These facilities consume from 10 to 100 times more power per square foot than typical office buildings. Modeling the power consumption for these infrastructures is crucial to anticipate the effects of aggressive optimization policies, but accurate and fast power modeling is a complex challenge for high-end servers not yet satisfied by analytical approaches. For this case study, our methodology minimizes error in power prediction. This work has been tested using real Cloud applications resulting on an average error in power estimation of 3.98%. Our work improves the possibilities of deriving Cloud energy efficient policies in Cloud data centers being applicable to other computing environments with similar characteristics.
Resumo:
The existing seismic isolation systems are based on well-known and accepted physical principles, but they are still having some functional drawbacks. As an attempt of improvement, the Roll-N-Cage (RNC) isolator has been recently proposed. It is designed to achieve a balance in controlling isolator displacement demands and structural accelerations. It provides in a single unit all the necessary functions of vertical rigid support, horizontal flexibility with enhanced stability, resistance to low service loads and minor vibration, and hysteretic energy dissipation characteristics. It is characterized by two unique features that are a self-braking (buffer) and a self-recentering mechanism. This paper presents an advanced representation of the main and unique features of the RNC isolator using an available finite element code called SAP2000. The validity of the obtained SAP2000 model is then checked using experimental, numerical and analytical results. Then, the paper investigates the merits and demerits of activating the built-in buffer mechanism on both structural pounding mitigation and isolation efficiency. The paper addresses the problem of passive alleviation of possible inner pounding within the RNC isolator, which may arise due to the activation of its self-braking mechanism under sever excitations such as near-fault earthquakes. The results show that the obtained finite element code-based model can closely match and accurately predict the overall behavior of the RNC isolator with effectively small errors. Moreover, the inherent buffer mechanism of the RNC isolator could mitigate or even eliminate direct structure-tostructure pounding under severe excitation considering limited septation gaps between adjacent structures. In addition, the increase of inherent hysteretic damping of the RNC isolator can efficiently limit its peak displacement together with the severity of the possibly developed inner pounding and, therefore, alleviate or even eliminate the possibly arising negative effects of the buffer mechanism on the overall RNC-isolated structural responses.
Resumo:
Current solutions to the interoperability problem in Home Automation systems are based on a priori agreements where protocols are standardized and later integrated through specific gateways. In this regards, spontaneous interoperability, or the ability to integrate new devices into the system with minimum planning in advance, is still considered a major challenge that requires new models of connectivity. In this paper we present an ontology-driven communication architecture whose main contribution is that it facilitates spontaneous interoperability at system model level by means of semantic integration. The architecture has been validated through a prototype and the main challenges for achieving complete spontaneous interoperability are also evaluated.
Resumo:
Apart from providing semantics and reasoning power to data, ontologies enable and facilitate interoperability across heterogeneous systems or environments. A good practice when developing ontologies is to reuse as much knowledge as possible in order to increase interoperability by reducing heterogeneity across models and to reduce development effort. Ontology registries, indexes and catalogues facilitate the task of finding, exploring and reusing ontologies by collecting them from different sources. This paper presents an ontology catalogue for the smart cities and related domains. This catalogue is based on curated metadata and incorporates ontology evaluation features. Such catalogue represents the first approach within this community and it would be highly useful for new ontology developments or for describing and annotating existing ontologies.
Resumo:
This paper aims to present a preliminary version of asupport-system in the air transport passenger domain. This system relies upon an underlying on-tological structure representing a normative framework to facilitatethe provision of contextualized relevant legal information.This information includes the pas-senger's rights and itenhances self-litigation and the decision-making process of passengers.Our contribution is based in the attempt of rendering a user-centric-legal informationgroundedon case-scenarios of the most pronounced incidents related to the consumer complaints in the EU.A number ofadvantages with re-spect to the current state-of-the-art services are discussed and a case study illu-strates a possible technological application.
Resumo:
Presentación en Workshop EUON 2014
Resumo:
We describe a domain ontology development approach that extracts domain terms from folksonomies and enrich them with data and vocabularies from the Linked Open Data cloud. As a result, we obtain lightweight domain ontologies that combine the emergent knowledge of social tagging systems with formal knowledge from Ontologies. In order to illustrate the feasibility of our approach, we have produced an ontology in the financial domain from tags available in Delicious, using DBpedia, OpenCyc and UMBEL as additional knowledge sources.
Resumo:
Video analytics play a critical role in most recent traffic monitoring and driver assistance systems. In this context, the correct detection and classification of surrounding vehicles through image analysis has been the focus of extensive research in the last years. Most of the pieces of work reported for image-based vehicle verification make use of supervised classification approaches and resort to techniques, such as histograms of oriented gradients (HOG), principal component analysis (PCA), and Gabor filters, among others. Unfortunately, existing approaches are lacking in two respects: first, comparison between methods using a common body of work has not been addressed; second, no study of the combination potentiality of popular features for vehicle classification has been reported. In this study the performance of the different techniques is first reviewed and compared using a common public database. Then, the combination capabilities of these techniques are explored and a methodology is presented for the fusion of classifiers built upon them, taking into account also the vehicle pose. The study unveils the limitations of single-feature based classification and makes clear that fusion of classifiers is highly beneficial for vehicle verification.
Resumo:
Query rewriting is one of the fundamental steps in ontologybased data access (OBDA) approaches. It takes as inputs an ontology and a query written according to that ontology, and produces as an output a set of queries that should be evaluated to account for the inferences that should be considered for that query and ontology. Different query rewriting systems give support to different ontology languages with varying expressiveness, and the rewritten queries obtained as an output do also vary in expressiveness. This heterogeneity has traditionally made it difficult to compare different approaches, and the area lacks in general commonly agreed benchmarks that could be used not only for such comparisons but also for improving OBDA support. In this paper we compile data, dimensions and measurements that have been used to evaluate some of the most recent systems, we analyse and characterise these assets, and provide a unified set of them that could be used as a starting point towards a more systematic benchmarking process for such systems. Finally, we apply this initial benchmark with some of the most relevant OBDA approaches in the state of the art.
Resumo:
Ontology-Based Data Access (OBDA) permite el acceso a diferentes tipos de fuentes de datos (tradicionalmente bases de datos) usando un modelo más abstracto proporcionado por una ontología. La reescritura de consultas (query rewriting) usa una ontología para reescribir una consulta en una consulta reescrita que puede ser evaluada en la fuente de datos. Las consultas reescritas recuperan las respuestas que están implicadas por la combinación de los datos explicitamente almacenados en la fuente de datos, la consulta original y la ontología. Al trabajar sólo sobre las queries, la reescritura de consultas permite OBDA sobre cualquier fuente de datos que puede ser consultada, independientemente de las posibilidades para modificarla. Sin embargo, producir y evaluar las consultas reescritas son procesos costosos que suelen volverse más complejos conforme la expresividad y tamaño de la ontología y las consultas aumentan. En esta tesis exploramos distintas optimizaciones que peuden ser realizadas tanto en el proceso de reescritura como en las consultas reescritas para mejorar la aplicabilidad de OBDA en contextos realistas. Nuestra contribución técnica principal es un sistema de reescritura de consultas que implementa las optimizaciones presentadas en esta tesis. Estas optimizaciones son las contribuciones principales de la tesis y se pueden agrupar en tres grupos diferentes: -optimizaciones que se pueden aplicar al considerar los predicados en la ontología que no están realmente mapeados con las fuentes de datos. -optimizaciones en ingeniería que se pueden aplicar al manejar el proceso de reescritura de consultas en una forma que permite reducir la carga computacional del proceso de generación de consultas reescritas. -optimizaciones que se pueden aplicar al considerar metainformación adicional acerca de las características de la ABox. En esta tesis proporcionamos demostraciones formales acerca de la corrección y completitud de las optimizaciones propuestas, y una evaluación empírica acerca del impacto de estas optimizaciones. Como contribución adicional, parte de este enfoque empírico, proponemos un banco de pruebas (benchmark) para la evaluación de los sistemas de reescritura de consultas. Adicionalmente, proporcionamos algunas directrices para la creación y expansión de esta clase de bancos de pruebas. ABSTRACT Ontology-Based Data Access (OBDA) allows accessing different kinds of data sources (traditionally databases) using a more abstract model provided by an ontology. Query rewriting uses such ontology to rewrite a query into a rewritten query that can be evaluated on the data source. The rewritten queries retrieve the answers that are entailed by the combination of the data explicitly stored in the data source, the original query and the ontology. However, producing and evaluating the rewritten queries are both costly processes that become generally more complex as the expressiveness and size of the ontology and queries increase. In this thesis we explore several optimisations that can be performed both in the rewriting process and in the rewritten queries to improve the applicability of OBDA in real contexts. Our main technical contribution is a query rewriting system that implements the optimisations presented in this thesis. These optimisations are the core contributions of the thesis and can be grouped into three different groups: -optimisations that can be applied when considering the predicates in the ontology that are actually mapped to the data sources. -engineering optimisations that can be applied by handling the process of query rewriting in a way that permits to reduce the computational load of the query generation process. -optimisations that can be applied when considering additional metainformation about the characteristics of the ABox. In this thesis we provide formal proofs for the correctness of the proposed optimisations, and an empirical evaluation about the impact of the optimisations. As an additional contribution, part of this empirical approach, we propose a benchmark for the evaluation of query rewriting systems. We also provide some guidelines for the creation and expansion of this kind of benchmarks.
Resumo:
La evaluación de ontologías, incluyendo diagnóstico y reparación de las mismas, es una compleja actividad que debe llevarse a cabo en cualquier proyecto de desarrollo ontológico para comprobar la calidad técnica de las ontologías. Sin embargo, existe una gran brecha entre los enfoques metodológicos sobre la evaluación de ontologías y las herramientas que le dan soporte. En particular, no existen enfoques que proporcionen guías concretas sobre cómo diagnosticar y, en consecuencia, reparar ontologías. Esta tesis pretende avanzar en el área de la evaluación de ontologías, concretamente en la actividad de diagnóstico. Los principales objetivos de esta tesis son (a) ayudar a los desarrolladores en el diagnóstico de ontologías para encontrar errores comunes y (b) facilitar dicho diagnóstico reduciendo el esfuerzo empleado proporcionando el soporte tecnológico adecuado. Esta tesis presenta las siguientes contribuciones: • Catálogo de 41 errores comunes que los ingenieros ontológicos pueden cometer durante el desarrollo de ontologías. • Modelo de calidad para el diagnóstico de ontologías alineando el catálogo de errores comunes con modelos de calidad existentes. • Diseño e implementación de 48 métodos para detectar 33 de los 41 errores comunes en el catálogo. • Soporte tecnológico OOPS!, que permite el diagnstico de ontologías de forma (semi)automática. De acuerdo con los comentarios recibidos y los resultados de los test de satisfacción realizados, se puede afirmar que el enfoque desarrollado y presentado en esta tesis ayuda de forma efectiva a los usuarios a mejorar la calidad de sus ontologías. OOPS! ha sido ampliamente aceptado por un gran número de usuarios de formal global y ha sido utilizado alrededor de 3000 veces desde 60 países diferentes. OOPS! se ha integrado en software desarrollado por terceros y ha sido instalado en empresas para ser utilizado tanto durante el desarrollo de ontologías como en actividades de formación. Abstract Ontology evaluation, which includes ontology diagnosis and repair, is a complex activity that should be carried out in every ontology development project, because it checks for the technical quality of the ontology. However, there is an important gap between the methodological work about ontology evaluation and the tools that support such an activity. More precisely, not many approaches provide clear guidance about how to diagnose ontologies and how to repair them accordingly. This thesis aims to advance the current state of the art of ontology evaluation, specifically in the ontology diagnosis activity. The main goals of this thesis are (a) to help ontology engineers to diagnose their ontologies in order to find common pitfalls and (b) to lessen the effort required from them by providing the suitable technological support. This thesis presents the following main contributions: • A catalogue that describes 41 pitfalls that ontology developers might include in their ontologies. • A quality model for ontology diagnose that aligns the pitfall catalogue to existing quality models for semantic technologies. • The design and implementation of 48 methods for detecting 33 out of the 41 pitfalls defined in the catalogue. • A system called OOPS! (OntOlogy Pitfall Scanner!) that allows ontology engineers to (semi)automatically diagnose their ontologies. According to the feedback gathered and satisfaction tests carried out, the approach developed and presented in this thesis effectively helps users to increase the quality of their ontologies. At the time of writing this thesis, OOPS! has been broadly accepted by a high number of users worldwide and has been used around 3000 times from 60 different countries. OOPS! is integrated with third-party software and is locally installed in private enterprises being used both for ontology development activities and training courses.
Resumo:
This paper discusses the target localization problem in wireless visual sensor networks. Additive noises and measurement errors will affect the accuracy of target localization when the visual nodes are equipped with low-resolution cameras. In the goal of improving the accuracy of target localization without prior knowledge of the target, each node extracts multiple feature points from images to represent the target at the sensor node level. A statistical method is presented to match the most correlated feature point pair for merging the position information of different sensor nodes at the base station. Besides, in the case that more than one target exists in the field of interest, a scheme for locating multiple targets is provided. Simulation results show that, our proposed method has desirable performance in improving the accuracy of locating single target or multiple targets. Results also show that the proposed method has a better trade-off between camera node usage and localization accuracy.