853 resultados para Faults detection and location


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dramatic impact of neurological degenerative pathologies in life quality is a growing concern. It is well known that many neurological diseases leave a fingerprint in voice and speech production. Many techniques have been designed for the detection, diagnose and monitoring the neurological disease. Most of them are costly or difficult to extend to primary attention medical services. Through the present paper it will be shown how some neurological diseases can be traced at the level of phonation. The detection procedure would be based on a simple voice test. The availability of advanced tools and methodologies to monitor the organic pathology of voice would facilitate the implantation of these tests. The paper hypothesizes that some of the underlying mechanisms affecting the production of voice produce measurable correlates in vocal fold biomechanics. A general description of the methodological foundations for the voice analysis system which can estimate correlates to the neurological disease is shown. Some study cases will be presented to illustrate the possibilities of the methodology to monitor neurological diseases by voice

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the detection and tracking of an unknown number of targets using a Bayesian hierarchical model with target labels. To approximate the posterior probability density function, we develop a two-layer particle filter. One deals with track initiation, and the other with track maintenance. In addition, the parallel partition method is proposed to sample the states of the surviving targets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a technique for achieving a class of optimizations related to the reduction of checks within cycles. The technique uses both Program Transformation and Abstract Interpretation. After a ñrst pass of an abstract interpreter which detects simple invariants, program transformation is used to build a hypothetical situation that simpliñes some predicates that should be executed within the cycle. This transformation implements the heuristic hypothesis that once conditional tests hold they may continué doing so recursively. Specialized versions of predicates are generated to detect and exploit those cases in which the invariance may hold. Abstract interpretation is then used again to verify the truth of such hypotheses and conñrm the proposed simpliñcation. This allows optimizations that go beyond those possible with only one pass of the abstract interpreter over the original program, as is normally the case. It also allows selective program specialization using a standard abstract interpreter not speciñcally designed for this purpose, thus simplifying the design of this already complex module of the compiler. In the paper, a class of programs amenable to such optimization is presented, along with some examples and an evaluation of the proposed techniques in some application áreas such as floundering detection and reducing run-time tests in automatic logic program parallelization. The analysis of the examples presented has been performed automatically by an implementation of the technique using existing abstract interpretation and program transformation tools.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite that Critical Infrastructures (CIs) security and surveillance are a growing concern for many countries and companies, Multi Robot Systems (MRSs) have not been yet broadly used in this type of facilities. This dissertation presents a novel study of the challenges arisen by the implementation of this type of systems and proposes solutions to specific problems. First, a comprehensive analysis of different types of CIs has been carried out, emphasizing the influence of the different characteristics of the facilities in the design of a security and surveillance MRS. One of the most important needs for the surveillance of a CI is the detection of intruders. From a technical point of view this problem can be abstracted as equivalent to the Detection and Tracking of Mobile Objects (DATMO). This dissertation proposes algorithms to solve this specific problem in a CI environment. Using 3D range images of the environment as input data, two detection algorithms for ground robots have been developed. These detection algorithms provide a list of moving objects in the robot detection area. Direct image differentiation and computer vision techniques are used when the robot is static. Alternatively, multi-layer ground reconstructions are compared to detect the dynamic objects when the robot is moving. Since CIs usually spread over large areas, it is very useful to incorporate aerial vehicles in the surveillance MRS. Therefore, a moving object detection algorithm for aerial vehicles has been also developed. This algorithm compares the real optical flow obtained from a down-face oriented camera with an artificial optical flow computed using a RANSAC based homography matrix. Two tracking algorithms have been developed to follow the moving objects trajectories. These algorithms can efficiently handle occlusions and crossings, as well as exchange information among robots. The multirobot tracking can be applied to any type of communication structure: centralized, decentralized or a combination of both. Even more, the developed tracking algorithms are independent of the detection algorithms and could be potentially used with other detection procedures or even with static sensors, such as cameras. In addition, using the 3D point clouds available to the robots, a relative localization algorithm has been developed to improve the position estimation of a given robot with observations from other robots. All the developed algorithms have been extensively tested in different simulated CIs using the Webots robotics simulator. Furthermore, the algorithms have also been validated with real robots operating in real scenarios. In conclusion, this dissertation presents a multirobot approach to Critical Infrastructure Surveillance, mainly focusing on Detecting and Tracking Dynamic Objects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The verification and validation activity plays a fundamental role in improving software quality. Determining which the most effective techniques for carrying out this activity are has been an aspiration of experimental software engineering researchers for years. This paper reports a controlled experiment evaluating the effectiveness of two unit testing techniques (the functional testing technique known as equivalence partitioning (EP) and the control-flow structural testing technique known as branch testing (BT)). This experiment is a literal replication of Juristo et al. (2013).Both experiments serve the purpose of determining whether the effectiveness of BT and EP varies depending on whether or not the faults are visible for the technique (InScope or OutScope, respectively). We have used the materials, design and procedures of the original experiment, but in order to adapt the experiment to the context we have: (1) reduced the number of studied techniques from 3 to 2; (2) assigned subjects to experimental groups by means of stratified randomization to balance the influence of programming experience; (3) localized the experimental materials and (4) adapted the training duration. We ran the replication at the Escuela Politécnica del Ejército Sede Latacunga (ESPEL) as part of a software verification & validation course. The experimental subjects were 23 master?s degree students. EP is more effective than BT at detecting InScope faults. The session/program andgroup variables are found to have significant effects. BT is more effective than EP at detecting OutScope faults. The session/program and group variables have no effect in this case. The results of the replication and the original experiment are similar with respect to testing techniques. There are some inconsistencies with respect to the group factor. They can be explained by small sample effects. The results for the session/program factor are inconsistent for InScope faults.We believe that these differences are due to a combination of the fatigue effect and a technique x program interaction. Although we were able to reproduce the main effects, the changes to the design of the original experiment make it impossible to identify the causes of the discrepancies for sure. We believe that further replications closely resembling the original experiment should be conducted to improve our understanding of the phenomena under study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the detection and identification of hydrocarbons through flu oro-sensing by developing a simple and inexpensive detector for inland water, in contrast to current systems, designed to be used for marine waters at large distances and being extremely costly. To validate the proposed system, three test-benches have been mounted, with various UV-Iight sources. Main application of this system would be detect hydrocarbons pollution in rivers, lakes or dams, which in fact, is of growing interest by administrations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Active optical sensing (LIDAR and light curtain transmission) devices mounted on a mobile platform can correctly detect, localize, and classify trees. To conduct an evaluation and comparison of the different sensors, an optical encoder wheel was used for vehicle odometry and provided a measurement of the linear displacement of the prototype vehicle along a row of tree seedlings as a reference for each recorded sensor measurement. The field trials were conducted in a juvenile tree nursery with one-year-old grafted almond trees at Sierra Gold Nurseries, Yuba City, CA, United States. Through these tests and subsequent data processing, each sensor was individually evaluated to characterize their reliability, as well as their advantages and disadvantages for the proposed task. Test results indicated that 95.7% and 99.48% of the trees were successfully detected with the LIDAR and light curtain sensors, respectively. LIDAR correctly classified, between alive or dead tree states at a 93.75% success rate compared to 94.16% for the light curtain sensor. These results can help system designers select the most reliable sensor for the accurate detection and localization of each tree in a nursery, which might allow labor-intensive tasks, such as weeding, to be automated without damaging crops.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we propose an innovative approach to tackle the problem of traffic sign detection using a computer vision algorithm and taking into account real-time operation constraints, trying to establish intelligent strategies to simplify as much as possible the algorithm complexity and to speed up the process. Firstly, a set of candidates is generated according to a color segmentation stage, followed by a region analysis strategy, where spatial characteristic of previously detected objects are taken into account. Finally, temporal coherence is introduced by means of a tracking scheme, performed using a Kalman filter for each potential candidate. Taking into consideration time constraints, efficiency is achieved two-fold: on the one side, a multi-resolution strategy is adopted for segmentation, where global operation will be applied only to low-resolution images, increasing the resolution to the maximum only when a potential road sign is being tracked. On the other side, we take advantage of the expected spacing between traffic signs. Namely, the tracking of objects of interest allows to generate inhibition areas, which are those ones where no new traffic signs are expected to appear due to the existence of a TS in the neighborhood. The proposed solution has been tested with real sequences in both urban areas and highways, and proved to achieve higher computational efficiency, especially as a result of the multi-resolution approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present an innovative technique to tackle the problem of automatic road sign detection and tracking using an on-board stereo camera. It involves a continuous 3D analysis of the road sign during the whole tracking process. Firstly, a color and appearance based model is applied to generate road sign candidates in both stereo images. A sparse disparity map between the left and right images is then created for each candidate by using contour-based and SURF-based matching in the far and short range, respectively. Once the map has been computed, the correspondences are back-projected to generate a cloud of 3D points, and the best-fit plane is computed through RANSAC, ensuring robustness to outliers. Temporal consistency is enforced by means of a Kalman filter, which exploits the intrinsic smoothness of the 3D camera motion in traffic environments. Additionally, the estimation of the plane allows to correct deformations due to perspective, thus easing further sign classification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we propose an innovative method for the automatic detection and tracking of road traffic signs using an onboard stereo camera. It involves a combination of monocular and stereo analysis strategies to increase the reliability of the detections such that it can boost the performance of any traffic sign recognition scheme. Firstly, an adaptive color and appearance based detection is applied at single camera level to generate a set of traffic sign hypotheses. In turn, stereo information allows for sparse 3D reconstruction of potential traffic signs through a SURF-based matching strategy. Namely, the plane that best fits the cloud of 3D points traced back from feature matches is estimated using a RANSAC based approach to improve robustness to outliers. Temporal consistency of the 3D information is ensured through a Kalman-based tracking stage. This also allows for the generation of a predicted 3D traffic sign model, which is in turn used to enhance the previously mentioned color-based detector through a feedback loop, thus improving detection accuracy. The proposed solution has been tested with real sequences under several illumination conditions and in both urban areas and highways, achieving very high detection rates in challenging environments, including rapid motion and significant perspective distortion

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Project you are about to see it is based on the technologies used on object detection and recognition, especially on leaves and chromosomes. To do so, this document contains the typical parts of a scientific paper, as it is what it is. It is composed by an Abstract, an Introduction, points that have to do with the investigation area, future work, conclusions and references used for the elaboration of the document. The Abstract talks about what are we going to find in this paper, which is technologies employed on pattern detection and recognition for leaves and chromosomes and the jobs that are already made for cataloguing these objects. In the introduction detection and recognition meanings are explained. This is necessary as many papers get confused with these terms, specially the ones talking about chromosomes. Detecting an object is gathering the parts of the image that are useful and eliminating the useless parts. Summarizing, detection would be recognizing the objects borders. When talking about recognition, we are talking about the computers or the machines process, which says what kind of object we are handling. Afterwards we face a compilation of the most used technologies in object detection in general. There are two main groups on this category: Based on derivatives of images and based on ASIFT points. The ones that are based on derivatives of images have in common that convolving them with a previously created matrix does the treatment of them. This is done for detecting borders on the images, which are changes on the intensity of the pixels. Within these technologies we face two groups: Gradian based, which search for maximums and minimums on the pixels intensity as they only use the first derivative. The Laplacian based methods search for zeros on the pixels intensity as they use the second derivative. Depending on the level of details that we want to use on the final result, we will choose one option or the other, because, as its logic, if we used Gradian based methods, the computer will consume less resources and less time as there are less operations, but the quality will be worse. On the other hand, if we use the Laplacian based methods we will need more time and resources as they require more operations, but we will have a much better quality result. After explaining all the derivative based methods, we take a look on the different algorithms that are available for both groups. The other big group of technologies for object recognition is the one based on ASIFT points, which are based on 6 image parameters and compare them with another image taking under consideration these parameters. These methods disadvantage, for our future purposes, is that it is only valid for one single object. So if we are going to recognize two different leaves, even though if they refer to the same specie, we are not going to be able to recognize them with this method. It is important to mention these types of technologies as we are talking about recognition methods in general. At the end of the chapter we can see a comparison with pros and cons of all technologies that are employed. Firstly comparing them separately and then comparing them all together, based on our purposes. Recognition techniques, which are the next chapter, are not really vast as, even though there are general steps for doing object recognition, every single object that has to be recognized has its own method as the are different. This is why there is not a general method that we can specify on this chapter. We now move on into leaf detection techniques on computers. Now we will use the technique explained above based on the image derivatives. Next step will be to turn the leaf into several parameters. Depending on the document that you are referring to, there will be more or less parameters. Some papers recommend to divide the leaf into 3 main features (shape, dent and vein] and doing mathematical operations with them we can get up to 16 secondary features. Next proposition is dividing the leaf into 5 main features (Diameter, physiological length, physiological width, area and perimeter] and from those, extract 12 secondary features. This second alternative is the most used so it is the one that is going to be the reference. Following in to leaf recognition, we are based on a paper that provides a source code that, clicking on both leaf ends, it automatically tells to which specie belongs the leaf that we are trying to recognize. To do so, it only requires having a database. On the tests that have been made by the document, they assure us a 90.312% of accuracy over 320 total tests (32 plants on the database and 10 tests per specie]. Next chapter talks about chromosome detection, where we shall pass the metaphasis plate, where the chromosomes are disorganized, into the karyotype plate, which is the usual view of the 23 chromosomes ordered by number. There are two types of techniques to do this step: the skeletonization process and swiping angles. Skeletonization progress consists on suppressing the inside pixels of the chromosome to just stay with the silhouette. This method is really similar to the ones based on the derivatives of the image but the difference is that it doesnt detect the borders but the interior of the chromosome. Second technique consists of swiping angles from the beginning of the chromosome and, taking under consideration, that on a single chromosome we cannot have more than an X angle, it detects the various regions of the chromosomes. Once the karyotype plate is defined, we continue with chromosome recognition. To do so, there is a technique based on the banding that chromosomes have (grey scale bands] that make them unique. The program then detects the longitudinal axis of the chromosome and reconstructs the band profiles. Then the computer is able to recognize this chromosome. Concerning the future work, we generally have to independent techniques that dont reunite detection and recognition, so our main focus would be to prepare a program that gathers both techniques. On the leaf matter we have seen that, detection and recognition, have a link as both share the option of dividing the leaf into 5 main features. The work that would have to be done is to create an algorithm that linked both methods, as in the program, which recognizes leaves, it has to be clicked both leaf ends so it is not an automatic algorithm. On the chromosome side, we should create an algorithm that searches for the beginning of the chromosome and then start to swipe angles, to later give the parameters to the program that searches for the band profiles. Finally, on the summary, we explain why this type of investigation is needed, and that is because with global warming, lots of species (animals and plants] are beginning to extinguish. That is the reason why a big database, which gathers all the possible species, is needed. For recognizing animal species, we just only have to have the 23 chromosomes. While recognizing a plant, there are several ways of doing it, but the easiest way to input a computer is to scan the leaf of the plant. RESUMEN. El proyecto que se puede ver a continuación trata sobre las tecnologías empleadas en la detección y reconocimiento de objetos, especialmente de hojas y cromosomas. Para ello, este documento contiene las partes típicas de un paper de investigación, puesto que es de lo que se trata. Así, estará compuesto de Abstract, Introducción, diversos puntos que tengan que ver con el área a investigar, trabajo futuro, conclusiones y biografía utilizada para la realización del documento. Así, el Abstract nos cuenta qué vamos a poder encontrar en este paper, que no es ni más ni menos que las tecnologías empleadas en el reconocimiento y detección de patrones en hojas y cromosomas y qué trabajos hay existentes para catalogar a estos objetos. En la introducción se explican los conceptos de qué es la detección y qué es el reconocimiento. Esto es necesario ya que muchos papers científicos, especialmente los que hablan de cromosomas, confunden estos dos términos que no podían ser más sencillos. Por un lado tendríamos la detección del objeto, que sería simplemente coger las partes que nos interesasen de la imagen y eliminar aquellas partes que no nos fueran útiles para un futuro. Resumiendo, sería reconocer los bordes del objeto de estudio. Cuando hablamos de reconocimiento, estamos refiriéndonos al proceso que tiene el ordenador, o la máquina, para decir qué clase de objeto estamos tratando. Seguidamente nos encontramos con un recopilatorio de las tecnologías más utilizadas para la detección de objetos, en general. Aquí nos encontraríamos con dos grandes grupos de tecnologías: Las basadas en las derivadas de imágenes y las basadas en los puntos ASIFT. El grupo de tecnologías basadas en derivadas de imágenes tienen en común que hay que tratar a las imágenes mediante una convolución con una matriz creada previamente. Esto se hace para detectar bordes en las imágenes que son básicamente cambios en la intensidad de los píxeles. Dentro de estas tecnologías nos encontramos con dos grupos: Los basados en gradientes, los cuales buscan máximos y mínimos de intensidad en la imagen puesto que sólo utilizan la primera derivada; y los Laplacianos, los cuales buscan ceros en la intensidad de los píxeles puesto que estos utilizan la segunda derivada de la imagen. Dependiendo del nivel de detalles que queramos utilizar en el resultado final nos decantaremos por un método u otro puesto que, como es lógico, si utilizamos los basados en el gradiente habrá menos operaciones por lo que consumirá más tiempo y recursos pero por la contra tendremos menos calidad de imagen. Y al revés pasa con los Laplacianos, puesto que necesitan más operaciones y recursos pero tendrán un resultado final con mejor calidad. Después de explicar los tipos de operadores que hay, se hace un recorrido explicando los distintos tipos de algoritmos que hay en cada uno de los grupos. El otro gran grupo de tecnologías para el reconocimiento de objetos son los basados en puntos ASIFT, los cuales se basan en 6 parámetros de la imagen y la comparan con otra imagen teniendo en cuenta dichos parámetros. La desventaja de este método, para nuestros propósitos futuros, es que sólo es valido para un objeto en concreto. Por lo que si vamos a reconocer dos hojas diferentes, aunque sean de la misma especie, no vamos a poder reconocerlas mediante este método. Aún así es importante explicar este tipo de tecnologías puesto que estamos hablando de técnicas de reconocimiento en general. Al final del capítulo podremos ver una comparación con los pros y las contras de todas las tecnologías empleadas. Primeramente comparándolas de forma separada y, finalmente, compararemos todos los métodos existentes en base a nuestros propósitos. Las técnicas de reconocimiento, el siguiente apartado, no es muy extenso puesto que, aunque haya pasos generales para el reconocimiento de objetos, cada objeto a reconocer es distinto por lo que no hay un método específico que se pueda generalizar. Pasamos ahora a las técnicas de detección de hojas mediante ordenador. Aquí usaremos la técnica explicada previamente explicada basada en las derivadas de las imágenes. La continuación de este paso sería diseccionar la hoja en diversos parámetros. Dependiendo de la fuente a la que se consulte pueden haber más o menos parámetros. Unos documentos aconsejan dividir la morfología de la hoja en 3 parámetros principales (Forma, Dentina y ramificación] y derivando de dichos parámetros convertirlos a 16 parámetros secundarios. La otra propuesta es dividir la morfología de la hoja en 5 parámetros principales (Diámetro, longitud fisiológica, anchura fisiológica, área y perímetro] y de ahí extraer 12 parámetros secundarios. Esta segunda propuesta es la más utilizada de todas por lo que es la que se utilizará. Pasamos al reconocimiento de hojas, en la cual nos hemos basado en un documento que provee un código fuente que cucando en los dos extremos de la hoja automáticamente nos dice a qué especie pertenece la hoja que estamos intentando reconocer. Para ello sólo hay que formar una base de datos. En los test realizados por el citado documento, nos aseguran que tiene un índice de acierto del 90.312% en 320 test en total (32 plantas insertadas en la base de datos por 10 test que se han realizado por cada una de las especies]. El siguiente apartado trata de la detección de cromosomas, en el cual se debe de pasar de la célula metafásica, donde los cromosomas están desorganizados, al cariotipo, que es como solemos ver los 23 cromosomas de forma ordenada. Hay dos tipos de técnicas para realizar este paso: Por el proceso de esquelotonización y barriendo ángulos. El proceso de esqueletonización consiste en eliminar los píxeles del interior del cromosoma para quedarse con su silueta; Este proceso es similar a los métodos de derivación de los píxeles pero se diferencia en que no detecta bordes si no que detecta el interior de los cromosomas. La segunda técnica consiste en ir barriendo ángulos desde el principio del cromosoma y teniendo en cuenta que un cromosoma no puede doblarse más de X grados detecta las diversas regiones de los cromosomas. Una vez tengamos el cariotipo, se continua con el reconocimiento de cromosomas. Para ello existe una técnica basada en las bandas de blancos y negros que tienen los cromosomas y que son las que los hacen únicos. Para ello el programa detecta los ejes longitudinales del cromosoma y reconstruye los perfiles de las bandas que posee el cromosoma y que lo identifican como único. En cuanto al trabajo que se podría desempeñar en el futuro, tenemos por lo general dos técnicas independientes que no unen la detección con el reconocimiento por lo que se habría de preparar un programa que uniese estas dos técnicas. Respecto a las hojas hemos visto que ambos métodos, detección y reconocimiento, están vinculados debido a que ambos comparten la opinión de dividir las hojas en 5 parámetros principales. El trabajo que habría que realizar sería el de crear un algoritmo que conectase a ambos ya que en el programa de reconocimiento se debe clicar a los dos extremos de la hoja por lo que no es una tarea automática. En cuanto a los cromosomas, se debería de crear un algoritmo que busque el inicio del cromosoma y entonces empiece a barrer ángulos para después poder dárselo al programa que busca los perfiles de bandas de los cromosomas. Finalmente, en el resumen se explica el por qué hace falta este tipo de investigación, esto es que con el calentamiento global, muchas de las especies (tanto animales como plantas] se están empezando a extinguir. Es por ello que se necesitará una base de datos que contemple todas las posibles especies tanto del reino animal como del reino vegetal. Para reconocer a una especie animal, simplemente bastará con tener sus 23 cromosomas; mientras que para reconocer a una especie vegetal, existen diversas formas. Aunque la más sencilla de todas es contar con la hoja de la especie puesto que es el elemento más fácil de escanear e introducir en el ordenador.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The verification and validation activity plays a fundamental role in improving software quality. Determining which the most effective techniques for carrying out this activity are has been an aspiration of experimental software engineering researchers for years. This paper reports a controlled experiment evaluating the effectiveness of two unit testing techniques (the functional testing technique known as equivalence partitioning (EP) and the control-flow structural testing technique known as branch testing (BT)). This experiment is a literal replication of Juristo et al. (2013). Both experiments serve the purpose of determining whether the effectiveness of BT and EP varies depending on whether or not the faults are visible for the technique (InScope or OutScope, respectively). We have used the materials, design and procedures of the original experiment, but in order to adapt the experiment to the context we have: (1) reduced the number of studied techniques from 3 to 2; (2) assigned subjects to experimental groups by means of stratified randomization to balance the influence of programming experience; (3) localized the experimental materials and (4) adapted the training duration. We ran the replication at the Escuela Polite?cnica del Eje?rcito Sede Latacunga (ESPEL) as part of a software verification & validation course. The experimental subjects were 23 master?s degree students. EP is more effective than BT at detecting InScope faults. The session/program and group variables are found to have significant effects. BT is more effective than EP at detecting OutScope faults. The session/program and group variables have no effect in this case. The results of the replication and the original experiment are similar with respect to testing techniques. There are some inconsistencies with respect to the group factor. They can be explained by small sample effects. The results for the session/program factor are inconsistent for InScope faults. We believe that these differences are due to a combination of the fatigue effect and a technique x program interaction. Although we were able to reproduce the main effects, the changes to the design of the original experiment make it impossible to identify the causes of the discrepancies for sure. We believe that further replications closely resembling the original experiment should be conducted to improve our understanding of the phenomena under study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of a common environment for processing different powder foods in the industry has increased the risk of finding peanut traces in powder foods. The analytical methods commonly used for detection of peanut such as enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (RT-PCR) represent high specificity and sensitivity but are destructive and time-consuming, and require highly skilled experimenters. The feasibility of NIR hyperspectral imaging (HSI) is studied for the detection of peanut traces down to 0.01% by weight. A principal-component analysis (PCA) was carried out on a dataset of peanut and flour spectra. The obtained loadings were applied to the HSI images of adulterated wheat flour samples with peanut traces. As a result, HSI images were reduced to score images with enhanced contrast between peanut and flour particles. Finally, a threshold was fixed in score images to obtain a binary classification image, and the percentage of peanut adulteration was compared with the percentage of pixels identified as peanut particles. This study allowed the detection of traces of peanut down to 0.01% and quantification of peanut adulteration from 10% to 0.1% with a coefficient of determination (r2) of 0.946. These results show the feasibility of using HSI systems for the detection of peanut traces in conjunction with chemical procedures, such as RT-PCR and ELISA to facilitate enhanced quality-control surveillance on food-product processing lines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different treatments (consolidation and water-repellent) were applied on samples of marble and granite from the Front stage of the Roman Theatre of Merida (Spain). The main goal is to study the effects of these treatments on archaeological stone material, by analyzing the surface changes. X-Ray Fluorescence and Laser-Induced Breakdown Spectroscopy techniques, as well as Nuclear Magnetic Resonance have been used in order to study changes in the surface properties of the material, comparing treated and untreated specimens. The results confirm that silicon (Si) marker tracking allows the detection of applied treatments, increasing the peak signal in treated specimens. Furthermore, it is also possible to prove changes both within the pore system of the materialand in the distribution of surface water, resulting from the application of these products