896 resultados para Fault compensation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experiment was performed to characterise the movement kinematics and the electromyogram (EMG) during rhythmic voluntary flexion and extension of the wrist against different compliant (elastic-viscous-inertial) loads. Three levels of each type of load, and an unloaded condition, were employed. The movements were paced at a frequency of I Hz by an auditory metronome, and visual feedback of wrist displacement in relation to a target amplitude of 100degrees was provided. Electro-myographic recordings were obtained from flexor carpi radialis (FCR) and extensor carpi radialis brevis (ECR). The movement profiles generated in the ten experimental conditions were indistinguishable, indicating that the CNS was able to compensate completely for the imposed changes in the task dynamics. When the level of viscous load was elevated, this compensation took the form of an increase in the rate of initial rise of the flexor and the extensor EMG burst. In response to increases in inertial load, the flexor and extensor EMG bursts commenced and terminated earlier in the movement cycle, and tended to be of greater duration. When the movements were performed in opposition to an elastic load, both the onset and offset of EMG activity occurred later than in the unloaded condition. There was also a net reduction in extensor burst duration with increases in elastic load, and an increase in the rate of initial rise of the extensor burst. Less pronounced alterations in the rate of initial rise of the flexor EMG burst were also observed. In all instances, increases in the magnitude of the external load led to elevations in the overall level of muscle activation. These data reveal that the elements of the central command that are modified in response to the imposition of a compliant load are contingent, not only upon the magnitude, but also upon the character of the load.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tailpipe emissions from automotive engines have been subject to steadily reducing legislative limits. This reduction has been achieved through the addition of sub-systems to the basic four-stroke engine which thereby increases its complexity. To ensure the entire system functions correctly, each system and / or sub-systems needs to be continuously monitored for the presence of any faults or malfunctions. This is a requirement detailed within the On-Board Diagnostic (OBD) legislation. To date, a physical model approach has been adopted by me automotive industry for the monitoring requirement of OBD legislation. However, this approach has restrictions from the available knowledge base and computational load required. A neural network technique incorporating Multivariant Statistical Process Control (MSPC) has been proposed as an alternative method of building interrelationships between the measured variables and monitoring the correct operation of the engine. Building upon earlier work for steady state fault detection, this paper details the use of non-linear models based on an Auto-associate Neural Network (ANN) for fault detection under transient engine operation. The theory and use of the technique is shown in this paper with the application to the detection of air leaks within the inlet manifold system of a modern gasoline engine whilst operated on a pseudo-drive cycle. Copyright © 2007 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the application of multivariate regression techniques to the Tennessee Eastman benchmark process for modelling and fault detection. Two methods are applied : linear partial least squares, and a nonlinear variant of this procedure using a radial basis function inner relation. The performance of the RBF networks is enhanced through the use of a recently developed training algorithm which uses quasi-Newton optimization to ensure an efficient and parsimonious network; details of this algorithm can be found in this paper. The PLS and PLS/RBF methods are then used to create on-line inferential models of delayed process measurements. As these measurements relate to the final product composition, these models suggest that on-line statistical quality control analysis should be possible for this plant. The generation of `soft sensors' for these measurements has the further effect of introducing a redundant element into the system, redundancy which can then be used to generate a fault detection and isolation scheme for these sensors. This is achieved by arranging the sensors and models in a manner comparable to the dedicated estimator scheme of Clarke et al. 1975, IEEE Trans. Pero. Elect. Sys., AES-14R, 465-473. The effectiveness of this scheme is demonstrated on a series of simulated sensor and process faults, with full detection and isolation shown to be possible for sensor malfunctions, and detection feasible in the case of process faults. Suggestions for enhancing the diagnostic capacity in the latter case are covered towards the end of the paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the application of an improved nonlinear principal component analysis (PCA) to the detection of faults in polymer extrusion processes. Since the processes are complex in nature and nonlinear relationships exist between the recorded variables, an improved nonlinear PCA, which incorporates the radial basis function (RBF) networks and principal curves, is proposed. This algorithm comprises two stages. The first stage involves the use of the serial principal curve to obtain the nonlinear scores and approximated data. The second stage is to construct two RBF networks using a fast recursive algorithm to solve the topology problem in traditional nonlinear PCA. The benefits of this improvement are demonstrated in the practical application to a polymer extrusion process.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wavelet transforms provide basis functions for time-frequency analysis and have properties that are particularly useful for the compression of analogue point on wave transient and disturbance power system signals. This paper evaluates the compression properties of the discrete wavelet transform using actual power system data. The results presented in the paper indicate that reduction ratios up to 10:1 with acceptable distortion are achievable. The paper discusses the application of the reduction method for expedient fault analysis and protection assessment.