799 resultados para Fatty Acids, Unsaturated
Resumo:
Oleoylethanolamide (OEA) is an agonist of the peroxisome proliferator-activated receptor α (PPARα) and has been described to exhibit neuroprotective properties when administered locally in animal models of several neurological disorder models, including stroke and Parkinson's disease. However, there is little information regarding the effectiveness of systemic administration of OEA on Parkinson's disease. In the present study, OEA-mediated neuroprotection has been tested on in vivo and in vitro models of 6-hydroxydopamine (6-OH-DA)-induced degeneration. The in vivo model was based on the intrastriatal infusion of the neurotoxin 6-OH-DA, which generates Parkinsonian symptoms. Rats were treated 2 h before and after the 6-OH-DA treatment with systemic OEA (0.5, 1, and 5 mg/kg). The Parkinsonian symptoms were evaluated at 1 and 4 wk after the development of lesions. The functional status of the nigrostriatal system was studied through tyrosine-hydroxylase (TH) and hemeoxygenase-1 (HO-1, oxidation marker) immunostaining as well as by monitoring the synaptophysin content. In vitro cell cultures were also treated with OEA and 6-OH-DA. As expected, our results revealed 6-OH-DA induced neurotoxicity and behavioural deficits; however, these alterations were less severe in the animals treated with the highest dose of OEA (5 mg/kg). 6-OH-DA administration significantly reduced the striatal TH-immunoreactivity (ir) density, synaptophysin expression, and the number of nigral TH-ir neurons. Moreover, 6-OH-DA enhanced striatal HO-1 content, which was blocked by OEA (5 mg/kg). In vitro, 0.5 and 1 μM of OEA exerted significant neuroprotection on cultured nigral neurons. These effects were abolished after blocking PPARα with the selective antagonist GW6471. In conclusion, systemic OEA protects the nigrostriatal circuit from 6-OH-DA-induced neurotoxicity through a PPARα-dependent mechanism.
Resumo:
The retrograde suppression of the synaptic transmission by the endocannabinoid sn-2-arachidonoylglycerol (2-AG) is mediated by the cannabinoid CB1 receptors and requires the elevation of intracellular Ca(2+) and the activation of specific 2-AG synthesizing (i.e., DAGLα) enzymes. However, the anatomical organization of the neuronal substrates that express 2-AG/CB1 signaling system-related molecules associated with selective Ca(2+)-binding proteins (CaBPs) is still unknown. For this purpose, we used double-label immunofluorescence and confocal laser scanning microscopy for the characterization of the expression of the 2-AG/CB1 signaling system (CB1 receptor, DAGLα, MAGL, and FAAH) and the CaBPs calbindin D28k, calretinin, and parvalbumin in the rat hippocampus. CB1, DAGLα, and MAGL labeling was mainly localized in fibers and neuropil, which were differentially organized depending on the hippocampal CaBPs-expressing cells. CB(+) 1 fiber terminals localized in all hippocampal principal cell layers were tightly attached to calbindin(+) cells (granular and pyramidal neurons), and calretinin(+) and parvalbumin(+) interneurons. DAGLα neuropil labeling was selectively found surrounding calbindin(+) principal cells in the dentate gyrus and CA1, and in the calretinin(+) and parvalbumin(+) interneurons in the pyramidal cell layers of the CA1/3 fields. MAGL(+) terminals were only observed around CA1 calbindin(+) pyramidal cells, CA1/3 calretinin(+) interneurons and CA3 parvalbumin(+) interneurons localized in the pyramidal cell layers. Interestingly, calbindin(+) pyramidal cells expressed FAAH specifically in the CA1 field. The identification of anatomically related-neuronal substrates that expressed 2-AG/CB1 signaling system and selective CaBPs should be considered when analyzing the cannabinoid signaling associated with hippocampal functions.
Resumo:
The endocannabinoid (eCB) system can promote food intake by increasing odor detection in mice. The eCB system is over-active in human obesity. Our aim is to measure circulating eCB concentrations and olfactory capacity in a human sample that includes people with obesity and explore the possible interaction between olfaction, obesity and the eCB system. The study sample was made up of 161 females with five groups of body mass index sub-categories ranging from under-weight to morbidly obese. We assessed olfactory capacity with the "Sniffin´Sticks" test, which measures olfactory threshold-discrimination-identification (TDI) capacity. We measured plasma concentrations of the eCBs 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine or anandamide (AEA), and several eCB-related compounds, 2-acylglycerols and N-acylethanolamines. 2-AG and other 2-acylglycerols fasting plasma circulating plasma concentrations were higher in obese and morbidly obese subjects. AEA and other N-acylethanolamine circulating concentrations were lower in under-weight subjects. Olfactory TDI scores were lower in obese and morbidly obese subjects. Lower TDI scores were independently associated with higher 2-AG fasting plasma circulating concentrations, higher %body fat, and higher body mass index, after controlling for age, smoking, menstruation, and use of contraceptives. Our results show that obese subjects have a lower olfactory capacity than non-obese ones and that elevated fasting plasma circulating 2-AG concentrations in obesity are linked to a lower olfactory capacity. In agreement with previous studies we show that eCBs AEA and 2-AG, and their respective congeners have a distinct profile in relation to body mass index. The present report is the first study in humans in which olfactory capacity and circulating eCB concentrations have been measured in the same subjects.
Resumo:
Expression of AtPHO1;H10, a member of the Arabidopsis (Arabidopsis thaliana) PHO1 gene family, is strongly induced following numerous abiotic and biotic stresses, including wounding, dehydration, cold, salt, and pathogen attack. AtPHO1;H10 expression by wounding was localized to the cells in the close vicinity of the wound site. AtPHO1;H10 expression was increased by application of the jasmonic acid (JA) precursor 12-oxo-phytodienoic acid (OPDA), but not by JA or coronatine. Surprisingly, induction of AtPHO1;H10 by OPDA was dependent on the presence of CORONATINE INSENSITIVE1 (COI1). The induction of AtPHO1;H10 expression by wounding and dehydration was dependent on COI1 and was comparable in both the wild type and the OPDA reductase 3-deficient (opr3) mutant. In contrast, induction of AtPHO1;H10 expression by exogenous abscisic acid (ABA) was independent of the presence of either OPDA or COI1, but was strongly decreased in the ABA-insensitive mutant abi1-1. The involvement of the ABA pathway in regulating AtPHO1;H10 was distinct between wounding and dehydration, with induction of AtPHO1;H10 by wounding being comparable to wild type in the ABA-deficient mutant aba1-3 and abi1-1, whereas a strong reduction in AtPHO1;H10 expression occurred in aba1-3 and abi1-1 following dehydration. Together, these results reveal that OPDA can modulate gene expression via COI1 in a manner distinct from JA, and independently from ABA. Furthermore, the implication of the ABA pathway in coregulating AtPHO1;H10 expression is dependent on the abiotic stress applied, being weak under wounding but strong upon dehydration
Resumo:
The trends in compliance with the dietary recommendations of the Swiss Society for Nutrition in the Geneva population were assessed for the period from 1999 to 2009 using 10 cross-sectional, population-based surveys (Bus Santé study) with a total of 9,320 participants aged 35 to 75 years (50% women). Dietary intake was assessed using a self-administered, validated, semi-quantitative food frequency questionnaire. Trends were assessed by logistic regression adjusting for age, smoking status, education, and nationality using survey year as the independent variable. After excluding participants with extreme intakes, the percentage of participants with a cholesterol intake of <300 mg/day increased from 40.8% in 1999 to 43.6% in 2009 for men (multivariate-adjusted P for trend=0.04) and from 57.8% to 61.4% in women (multivariate-adjusted P for trend=0.06). Calcium intake >1 g/day decreased from 53.3% to 46% in men and from 47.6% to 40.7% in women (multivariate-adjusted P for trend<0.001). Adequate iron intake decreased from 68.3% to 65.3% in men and from 13.3% to 8.4% in women (multivariate-adjusted P for trend<0.001). Conversely, no significant changes were observed for carbohydrates, protein, total fat (including saturated, monounsaturated, and polyunsaturated fatty acids), fiber, and vitamins D and A. We conclude that the quality of the Swiss diet did not improve between 1999 and 2009 and that intakes deviate substantially from expert recommendations for health promotion and chronic disease risk reduction.
Resumo:
Tocopherols (vitamin E) are lipophilic antioxidants that are synthesized by all plants and are particularly abundant in seeds. Two tocopherol-deficient mutant loci in Arabidopsis thaliana were used to examine the functions of tocopherols in seedlings: vitamin e1 (vte1), which accumulates the pathway intermediate 2,3-dimethyl-5-phytyl-1,4-benzoquinone (DMPBQ); and vte2, which lacks all tocopherols and pathway intermediates. Only vte2 displayed severe seedling growth defects, which corresponded with massively increased levels of the major classes of nonenzymatic lipid peroxidation products: hydroxy fatty acids, malondialdehyde, and phytoprostanes. In the absence of pathogens, the phytoalexin camalexin accumulated in vte2 seedlings to levels 100-fold higher than in wild-type or vte1 seedlings. Similarly, gene expression profiling in wild-type, vte1, and vte2 seedlings indicated that increased levels of nonenzymatic lipid peroxidation in vte2 corresponded to increased expression of many defense-related genes, which were not induced in vte1. Both biochemical and transcriptional analyses of vte2 seedlings indicate that nonenzymatic lipid peroxidation plays a significant role in modulating plant defense responses. Together, these results establish that tocopherols in wild-type plants or DMPBQ in vte1 plants limit nonenzymatic lipid peroxidation during germination and early seedling development, thereby preventing the inappropriate activation of transcriptional and biochemical defense responses.
Resumo:
Jasmonic acid and its precursors are potent regulatory molecules in plants. We devised a method for the simultaneous extraction of these compounds from plant leaves to quantitate changes in the levels of jasmonate family members during health and on wounding. During our study, we identified a novel 16-carbon cyclopentenoic acid in leaf extracts from Arabidopsis and potato. The new compound, a member of the jasmonate family of signals, was named dinor-oxo-phytodienoic acid. Dinor-oxo-phytodienoic acid was not detected in the Arabidopsis mutant fad5, which is incapable of synthesizing 7Z,10Z, 13Z-hexadecatrienoic acid (16:3), suggesting that the metabolite is derived directly from plastid 16:3 rather than by beta-oxidation of the 18-carbon 12-oxo-phytodienoic acid. Simultaneous quantitation of jasmonate family members in healthy leaves of Arabidopsis and potato suggest that different plant species have different relative levels of jasmonic acid, oxo-phytodienoic acid, and dinor-oxo-phytodienoic acid. We term these profiles "oxylipin signatures." Dinor-oxo-phytodienoic acid levels increased dramatically in Arabidopsis and potato leaves on wounding, suggesting roles in wound signaling. Treatment of Arabidopsis with micromolar levels of dinor-oxo-phytodienoic acid increased the ability of leaf extracts to transform linoleic acid into the alpha-ketol 13-hydroxy-12-oxo-9(Z) octadecenoic acid indicating that the compound can regulate part of its own biosynthetic pathway. Tightly regulated changes in the relative levels of biologically active jasmonates may permit sensitive control over metabolic, developmental, and defensive processes in plants.
Resumo:
The three peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors of the nuclear hormone receptor superfamily. They share a high degree of structural homology with all members of the superfamily, particularly in the DNA-binding domain and ligand- and cofactor-binding domain. Many cellular and systemic roles have been attributed to these receptors, reaching far beyond the stimulation of peroxisome proliferation in rodents after which they were initially named. PPARs exhibit broad, isotype-specific tissue expression patterns. PPARalpha is expressed at high levels in organs with significant catabolism of fatty acids. PPARbeta/delta has the broadest expression pattern, and the levels of expression in certain tissues depend on the extent of cell proliferation and differentiation. PPARgamma is expressed as two isoforms, of which PPARgamma2 is found at high levels in the adipose tissues, whereas PPARgamma1 has a broader expression pattern. Transcriptional regulation by PPARs requires heterodimerization with the retinoid X receptor (RXR). When activated by a ligand, the dimer modulates transcription via binding to a specific DNA sequence element called a peroxisome proliferator response element (PPRE) in the promoter region of target genes. A wide variety of natural or synthetic compounds was identified as PPAR ligands. Among the synthetic ligands, the lipid-lowering drugs, fibrates, and the insulin sensitizers, thiazolidinediones, are PPARalpha and PPARgamma agonists, respectively, which underscores the important role of PPARs as therapeutic targets. Transcriptional control by PPAR/RXR heterodimers also requires interaction with coregulator complexes. Thus, selective action of PPARs in vivo results from the interplay at a given time point between expression levels of each of the three PPAR and RXR isotypes, affinity for a specific promoter PPRE, and ligand and cofactor availabilities.
Resumo:
O objetivo neste trabalho foi avaliar as características químicas e a composição em ácidos graxos do contrafilé (músculo Longissimus) de tourinhos, novilhos e novilhas da raça Canchim. Os animais foram terminados em confinamento com duas dietas experimentais, uma com silagem de milho e concentrado e outra com cana-de-açúcar e concentrado contendo grãos de girassol. Os teores de umidade, proteína e minerais no músculo não diferiram entre as dietas e as condições sexuais dos animais. A carne de novilhos terminados com a dieta com grãos de girassol apresentou maior teor de lipídios (3,31%) em comparação à dos animais de outras categorias. Os animais que receberam a dieta com grãos de girassol apresentaram maiores concentrações de ácido linoléico conjugado (18:2 cis9, trans-11) (0,73%) e ácidos graxos poliinsaturados (8,12%) no músculo, e também relações mais elevadas de ácidos graxos insaturados:saturados (0,93) e ácidos graxos poliinsaturados:saturados (0,16) em comparação àqueles que receberam a dieta convencional, à base de silagem de milho (0,34%; 6,31%; 0,86; e 0,11, respectivamente). A composição em ácidos graxos da carne de bovinos pode ser melhorada com a utilização de cana-de-açúcar e grãos de girassol na dieta dos animais terminados em confinamento.
Resumo:
The case of a patient with ulcerative colitis and isolated sacro-ileitis is presented. She suffered reactivation of the intestinal disease with diclofenac. The patient was allergic to sulfasalazine and was using fish oil fatty acid. The possible mechanisms of reactivation of the inflammatory bowel disease with non-steroidal anti-inflammatory drugs are discussed. It is suggested when necessary the utilization of non-steroidal anti-inflammatory drugs that inhibits the lipoxygenase in these patients.
Resumo:
Background: High plasma uric acid (UA) is a prerequisite for gout and is also associated with the metabolic syndrome and its components and consequently risk factors for cardiovascular diseases. Hence, the management of UA serum concentrations would be essential for the treatment and/or prevention of human diseases and, to that end, it is necessary to know what the main factors that control the uricemia increase. The aim of this study was to evaluate the main factors associated with higher uricemia values analyzing diet, body composition and biochemical markers. Methods. 415 both gender individuals aged 21 to 82 years who participated in a lifestyle modification project were studied. Anthropometric evaluation consisted of weight and height measurements with later BMI estimation. Waist circumference was also measured. The muscle mass (Muscle Mass Index - MMI) and fat percentage were measured by bioimpedance. Dietary intake was estimated by 24-hour recalls with later quantification of the servings on the Brazilian food pyramid and the Healthy Eating Index. Uric acid, glucose, triglycerides (TG), total cholesterol, urea, creatinine, gamma-GT, albumin and calcium and HDL-c were quantified in serum by the dry-chemistry method. LDL-c was estimated by the Friedewald equation and ultrasensitive C-reactive protein (CRP) by the immunochemiluminiscence method. Statistical analysis was performed by the SAS software package, version 9.1. Linear regression (odds ratio) was performed with a 95% confidence interval (CI) in order to observe the odds ratio for presenting UA above the last quartile (♂UA > 6.5 mg/dL and ♀ UA > 5 mg/dL). The level of significance adopted was lower than 5%. Results: Individuals with BMI ≥ 25 kg/m§ssup§2§esup§ OR = 2.28(1.13-4.6) and lower MMI OR = 13.4 (5.21-34.56) showed greater chances of high UA levels even after all adjustments (gender, age, CRP, gamma-gt, LDL, creatinine, urea, albumin, HDL-c, TG, arterial hypertension and glucose). As regards biochemical markers, higher triglycerides OR = 2.76 (1.55-4.90), US-CRP OR = 2.77 (1.07-7.21) and urea OR = 2.53 (1.19-5.41) were associated with greater chances of high UA (adjusted for gender, age, BMI, waist circumference, MMI, glomerular filtration rate, and MS). No association was found between diet and UA. Conclusions: The main factors associated with UA increase were altered BMI (overweight and obesity), muscle hypotrophy (MMI), higher levels of urea, triglycerides, and CRP. No dietary components were found among uricemia predictors. © 2013 de Oliveira et al.; licensee BioMed Central Ltd.
Resumo:
A sociedade está cada vez mais exigente com relação à qualidade dos produtos consumidos e se preocupa com os benefícios para a saúde. Neste contexto, objetivou-se avaliar o efeito da inclusão de níveis de óleo de canola na dieta de vacas sobre amanteiga e muçarela, buscando produtos mais saudáveis para o consumo humano. Foram utilizadas 18 vacas Holandesas, em estágio intermediário de lactação, com produção média de 22 (± 4) Kg de leite/ dia, as quais foram distribuídas em dois quadrados latinos 3x3 contemporâneos e receberam as dietas experimentais: T1- Controle (0% de inclusão de óleo); T2- 3% de inclusão de óleo de canola e T3- 6% de inclusão de óleo de canola. O perfil lipídico foi determinado através de cromatografia gasosa, além da avaliação de qualidade nutricional, realizada através de equações utilizando os ácidos graxos obtidos no perfil lipídico, análises físico-químicas determinadas pela metodologia do Instituto Adolfo Lutz e análises microbiológicas. Houveram problemas durante processamento do leite, gerando alterações de tecnologia de fabricação do produto manteiga, obtendo-se outro produto, o creme de leite, ao invés de manteiga, além de prejuízos na qualidade microbiológicas do creme de leite e muçarela. A inclusão de óleo de canola na dieta em lactação reduziu quadraticamente os ácidos graxos de cadeia curta e proporcionou aumento quadrático dos ácidos graxos de cadeia longa, dos ácidos graxos insaturados e ácidos graxos monoinsaturados na muçarela. A relação ácidos graxos saturados/ ácidos graxos insaturados (AGS/ AGI) e a relação ômega-6/ômega-3, assim como os índices de aterogenicidade e trombogenicidade, na muçarela, reduziram linearmente 25,68%, 31,35%; 32,12% e 21,78%, respectivamente, quando comparando T1 e T3. No creme de leite, houve redução linear dos ácidos graxos de cadeia curta e média, bem como, os ácidos graxos saturados e a relação ácidos graxos saturados/ ácidos graxos insaturados (AGS/ AGI) em 41,07%; 23,82%; 15,91% e 35,59%, respectivamente, enquanto os ácidos graxos de cadeia longa, ácidos graxos insaturados e ácidos graxos monoinsaturados aumentaram linearmente 41,40%; 28,24% e 32,07%, nesta ordem, quando comparando T1 com T3. Os índices de aterogenicidade e trombogenicidade reduziram de forma linear, enquanto o índice h/H (razão ácidos graxos hipocolesterolêmicos e hipercolesterolêmicos) aumentou linearmente. A composição físico-química de ambos derivados e o rendimento da muçarela não apresentaram efeito significativo com a inclusão do óleo de canola, exceto a proteína bruta da muçarela que apresentou aumento linear e a gordura do creme de leite que apresentou efeito quadrático. As análises microbiológicas mostram contagens muito elevadas de microrganismos, sugerindo que os produtos não apresentam qualidade microbiológica, decorrente da ausência do processo de pasteurização do creme e da baixa eficiência do tratamento térmico aplicado ao leite destinado a produção da muçarela. Conclui-se que a adição de óleo de canola na dieta de vacas lactantes proporciona muçarela e creme de leite mais saudáveis para o consumo humano, pois apresentaram perfil lipídico mais rico em ácidos graxos insaturados, além da série ômega-3 e ácido oleico, entretanto, devido a problemas de processamento, estes produtos obtidos, não estão aptos ao consumo devido à ausência de qualidade microbiológica.
Resumo:
The objective was to evaluate the effect of unsaturated fatty acid sources supplementation on nutrients balances and milk fatty acid profile of mid lactation dairy cows. Twelve Brazilian Holstein cows in the mid lactation (mean of 128 days) and (580 ± 20kg of weight; mean ± SD) with milk yield of 25kg/d were assigned randomly into three 4 × 4 Latin square, fed the following diets: control (C); refined soybean oil; (SO); whole soybean raw (WS) and; calcium salts of unsaturated fatty acids (CSFA). Milk yield was 26.6; 26.4; 24.1 and 25.7 to the diets CO, SO, WS and CSFA respectively. Cows fed the WS treatment produced less milk (1.95kg/d of milk), fat and lactose than did cows fed the SO and CSFA. Cows fed the CSFA treatment showed less blood, urine (g/d) concentrations of N more energetic efficiency and intake of energy than did cows fed the SO treatment. Cows fed the unsaturated fatty acids sources showed more C18:2 cis-9, trans-11 CLA and trans-C18:1 FA concentration in milk than did cows fed the CO treatment. Diets with whole soybeans and soybeans oil provide more efficient digestive processes, and increase milk composition of unsaturated fatty acids.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Anacardic acids, a class of secondary compounds derived from fatty acids, are found in a variety of dicotyledonous families. Pest resistance (e.g., spider mites and aphids) in Pelargonium xhortorum (geranium) is associated with high levels (approximately 81%) of unsaturated 22:1 omega 5 and 24:1 omega 5 anacardic acids in the glandular trichome exudate. A single dominant locus controls the production of these omega 5 anacardic acids, which arise from novel 16:1 delta 11 and 18:1 delta 13 fatty acids. We describe the isolation and characterization of a cDNA encoding a unique delta 9 14:0-acyl carrier protein fatty acid desaturase. Several lines of evidence indicated that expression of this desaturase leads to the production of the omega 5 anacardic acids involved in pest resistance. First, its expression was found in pest-resistant, but not suspectible, plants and its expression followed the production of the omega 5 anacardic acids in segregating populations. Second, its expression and the occurrence of the novel 16:1 delta 11 and 18:1 delta 13 fatty acids and the omega 5 anacardic acids were specific to tall glandular trichomes. Third, assays of the recombinant protein demonstrated that this desaturase produced the 14:1 delta 9 fatty acid precursor to the novel 16:1 delta 11 and 18:1 delta 13 fatty acids. Based on our genetic and biochemical studies, we conclude that expression of this delta 9 14:0-ACP desaturase gene is required for the production of omega 5 anacardic acids that have been shown to be necessary for pest resistance in geranium.